• 제목/요약/키워드: Molding Variables

검색결과 89건 처리시간 0.024초

컵 발포시험을 이용한 폴리우레탄 반응사출성형의 발포 특성에 관한 연구 (A Study on Foaming Characteristics of Polyurethane Reaction Injection Molding using Cup Foam Test)

  • 윤재웅;김홍석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.106-109
    • /
    • 2008
  • Polyurethane has been one of the most important materials for automobile elastic parts such as bumper, head rest, instrument panel and so on since it covers very wide range of mechanical characteristics with low production costs. The process variables such as formulation of ingredients and mold temperature, mixing speed, etc. can affect the quality of produced polyurethane foams so that process conditions should be determined appropriately. In this study, foaming behaviors of semi-rigid polyurethane were investigated by conducting cup foam tests with 2 major process variables such as environmental temperature and blowing agent content.

  • PDF

다구찌 방법을 이용한 폴리아세탈 수지 절삭조건 결정 (An Optimal Parameter Design of Polyacetal Resin Cutting Experiment Using Taguchi Method)

  • 조용욱;박명규;김희남
    • 대한안전경영과학회지
    • /
    • 제3권1호
    • /
    • pp.117-125
    • /
    • 2001
  • Polyacetal resin is usually used to make molds, but it is difficult to achieve dimension accuracy during molding. Therefore it is usually necessary to cut the polyacetal resin after a molding process. Polyacetal resin is easily machining by standard machine tool. Acetal is also a thermal stable material which can be totted without coolant Another concern about the use of polyacetal resin is that it absorbs water easily, which also results in problems with dimension accuracy Therefore, in this study, the cutting resistance of water-absorbed polyacetal resin and its surface roughness after cutting in order to achieve the highest degree of accuracy in the cutting of polyacetal resin were investigated. Also, The Robust Design method uses a mathematical tool called orthogonal arrays to study a large number of decision variables with a small number of experiments. It also uses a new measure of quality, called signal-to-noise (S/N) ratio, to predict the quality from the customer's perspective. Thus, we have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/N ratio.

  • PDF

동특성 강건 설계를 이용한 사출품의 휨 최소화 (Minimization of Warpage of Injection Molded Parts using Dynamic Robust Design)

  • 김경모;박종천
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.44-50
    • /
    • 2015
  • This paper presents a heuristic process-optimization procedure for minimizing warpage in injection-molded parts based on the dynamic robust design methodology. The injection molding process is known to have intrinsic variations of its process conditions due to various factors, including incomplete process control facilities. The aim of the robust design methodology advocated by Taguchi is to determine the optimum design variables in a system which is robust to variations in uncontrollable factors. The proposed procedure can determine the optimal robust conditions of injection molding processes at a minimum cost through a trade-off strategy between the degree of warpage and the packing time.

A Study on Molding Condition of Aspheric Glass Lenses Using Design of Experiments Slow Cooling Condition

  • Cha, Du-Hwan;Lee, June-Key;Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Park, Yong-Pil;Jeong, Jong-Guy;Kim, Jeong-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.464-464
    • /
    • 2008
  • This study investigated the slow cooling conditions in the molding of aspheric glass lens using the design of experiment (DOE). The optimization of the slow cooling conditions with respect to the form accuracy (PV) of the molded lens were ascertained by employing full factorial design. As a result of the analysis of variance (ANOVA) and P-value (significance level), it was verified that slow cooling rate represent the most significant operative variables that affect the corresponding response variable. In the optimum condition, the molded lens show 82% of transcription ratio.

  • PDF

사출압축성형에서 복굴절을 통한 성형조건에 따른 성형특성 고찰 (Investigation of Molding Characteristics in Injection Compression Molding According to Molding Conditions through Birefringence)

  • 이단비;남윤효;류민영
    • 폴리머
    • /
    • 제38권2호
    • /
    • pp.193-198
    • /
    • 2014
  • 렌즈 그리고 DVD 등과 같은 성형품들은 우수한 광학적 특성을 필요로 한다. 일반사출성형 공정은 캐비티 내에 압력이 높고 큰 온도변화를 포함하게 되어 성형품에 큰 잔류응력이 남아 광학적 품질이 저하된다. 따라서 이와 같은 제품들은 성형 시 잔류응력을 최소화하기 위해 캐비티 내의 압력을 낮게 그리고 균일하게 조절할 수 있는 사출압축성형 공정을 사용하는 경우가 많다. 본 연구에서는 실험을 통하여 사출압축 성형품에 영향을 주는 성형인자를 분석하였다. 다수 캐비티 금형을 이용하여 캐비티 간 품질편차도 고찰하였다. 실험에 사용한 재료는 투명수지인 PC와 PS이었다. 사출압축성형의 실험에서 공정변수로는 압축거리, 압축속도, 압축력 그리고 압축지연시간을 이용하였다. 실험결과, 사출압축성형 공정 변수 중 압축력과 압축지연시간 그리고 압축거리가 광학적 특성에 크게 영향을 미쳤으며 그 정도는 수지에 따라 다르게 나타났다. 이러한 현상은 사출압축성형 시 수지마다 유동성에 따라 최적의 성형조건이 있음을 의미하는 것이다.

Injection Molding of Vertebral Fixed Cage Implant

  • Yoo, Kyun Min;Lee, Seok Won;Youn, Jae Ryoun;Yoon, Do Heum;Cho, Yon Eun;Yu, Jae-Pil;Park, Hyung Sang
    • Fibers and Polymers
    • /
    • 제4권2호
    • /
    • pp.89-96
    • /
    • 2003
  • A vertebral cage is a hollow medical device which is used in spine forgery. By implanting the cage into the spine column, it is possible to restore disc and relieve pressure on the nerve roots. Most cages have been made of titanium alloys but they detract the biocompatibility. Currently PEEK (polyether ether ketone) if applied to various implants because it has good properties like heat resistance, chemical resistance, strength, and especially biocompatibility. A new shape of vertebral cage is designed and injection molding of PEEK is considered for production. Before injection molding of the cage, it is needed to evaluate process conditions and properties of the final product. Variables affecting the shrinkage of the cage are considered, e.g., injection time, packing pressure, mold temperature, and melt temperature. By using the numerical simula-tion program, MOLDFLOW, several cases are studied. Data files obtained by MOLDFLOW analysis are used for stress anal-ysis with ABAQUS, and shrinkage and residual stress fields are predicted. With these results, optimum process conditions are determined.

CAE 를 이용한 이중사출 제품의 러너 및 게이트 영향에 대한 연구 (A Study on the Runner and Gate Consequence of Manufacture Double Shot Molding using CAE)

  • 김옥래;차백순;이상용;김영근;우창기
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.160-165
    • /
    • 2009
  • A Study on Effects of the Runner and the Gate of double shot injection molded Parts using CAE Double shot injection molding can inject two different materials or two different colors in the same mold in a injection molding process. Double shot injection molded parts can be characterized that the base part maintains strength and specified part can inject soft-material. It can reduce the production cost by single automatic operations. In this paper, we designed double shot injection mold for automobile emote control To inject secondary part, this part is used as an insert after external appearance of product is injected. CAE analysis was progressed gate location and runner size as variables. The analysis result is reflected in mold design process. As a result, it could solve problems which are generated in the conventional mold. Additionally, cost can be downed by reducing runner weight. As well as it could omit painting process because the surface of finished product is improved through new mold.

Optimization of injection molding process for car fender in consideration of energy efficiency and product quality

  • Park, Hong Seok;Nguyen, Trung Thanh
    • Journal of Computational Design and Engineering
    • /
    • 제1권4호
    • /
    • pp.256-265
    • /
    • 2014
  • Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using non-dominated sorting genetic algorithm II (NSGA II) in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.

공리적 개념을 적용한 사출성형 시스템의 최적설계 (The Optimization of Injection Molding System Using Axiomatic Approach)

  • 김종헌;이종수;차성운
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1020-1027
    • /
    • 2003
  • A traditional mold design has been conducted by an experience-based trial and error, whereby the mold designer would decide the gate locations and processing conditions based on the caring characteristics and its functional requirements. The paper suggests an optimal gate location and processing conditions in the injection molding using a global search method referred to as micro genetic algorithm( ${\mu}$ GA). ${\mu}$ GA yields the optimal solution with a small size of population without respect to design variables for saving time that is needed to calculate the fitness of many individuals. Due to the reason, the paper uses a commercial analysis package of injection molding(CAPA) to analysis a state of flux. In addition to that, axiomatic approach .is applied in the beginning of design. It is a useful method to draw a well-organized and reasonable idea to handle a problem.

APG 주형방식을 이용한 가스절연개폐기용 절연 스페이서 제작에 관한 연구 (A Study on the Manufacture of Gas Insulated Switchgear Spacer Using APG Molding Process)

  • 이찬용;배재성;조한구;이상묵;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.386-391
    • /
    • 2022
  • The gas insulation switchgear, which is a device for protecting a power system, cannot be supported by the insulation gas itself in a charge unit stored in a metal container. Therefore, molding technology is required to manufacture a gas insulation switch spacer. The APG method injection molding simulation was performed by applying the variables obtained through the physical properties of an epoxy composite used for manufacturing an insulating spacer to a moldflow software. After varying the temperature conditions of heater in the simulation, the thermal characteristics and the degree of hardening of the spacer were analyzed, based on which the optimum process conditions are presented.