• Title/Summary/Keyword: Molding Temperature

Search Result 772, Processing Time 0.028 seconds

The Difference of the Degree of Crystallinity of Foamed Plastics Depending on the Pressure Gradient in Mold Cavity (금형 cavity 내의 압력 차이에 의한 발포사출품의 결정화도 차이)

  • 이동욱;차성운;현창훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1354-1357
    • /
    • 2003
  • Mold Analysis is crucial factors in the design of injection molding process. Since the qualify of products depends on filing, shrinkage and etc, the procedure of prediction through analysis in the design of injection molding process is needed. In many cases, this kind of analysis makes it possible to predict pressure pattern which determines the condition of injection molding process. Crystallinity is the factor that determines the shrinkage of products. The studies showed the factors that had been related to the degree of crystallinity, which were mostly Weight Reduction, mold temperature and melt temperature. Therefore, the objective of this study is to see the differences of the degree of crystallinity depending on the positions of foamed plastics. The procedure of this study is as the following. First, Simulate the pressure gradient in mold cavity that can produces specimen by using Moldflow. Secondly, produce specimen and measure the degree or crystallinity of each part of specimen by using XRD. Lastly, identify the sensitivity of conventional plastic and foamed plastic on pressure gradient by comparing the simulation and the results of measurement.

  • PDF

Investigation of pressure-volume-temperature relationship by ultrasonic technique and its application for the quality prediction of injection molded parts

  • Kim Jung Gon;Kim Hyungsu;Kim Han Soo;Lee Jae Wook
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.163-168
    • /
    • 2004
  • In this study, an ultrasonic technique was employed to obtain pressure-volume-temperature (PVT) rela­tionship of polymer melt by measuring ultrasonic velocities under various temperatures and pressures. The proposed technique was applied to on-line monitoring of injection molding process as an attempt to predict quality of molded parts. From the comparison based on Tait equation, it was confirmed that the PVT behav­ior of a polymer is well described by the variation of ultrasonic velocities measured within the polymer medium. In addition, the changes in part weight and moduli were successfully predicted by combining the data collected from ultrasonic technique and artificial neural network algorithm. The results found from this study suggest that the proposed technique can be effectively utilized to monitor the evolution of solid­ification within the mold by measuring ultrasonic responses of various polymers during injection molding process. Such data are expected to provide a critical basis for the accurate prediction of final performance of molded parts.

Development of Hybrid RIM Mold to Form Outfit-part for Prototype-cars (시작차용 의장부품 성형을 위한 하이브리드 림 몰드 개발)

  • Yang, Hwa-Jun;Hwang, Po-Jung;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.75-83
    • /
    • 2001
  • RIM(Reaction Injection Molding) is a widely used method to manufacture middle-large size outfit-part for a prototype car. The main advantage of RIM is the capability of manufacturing a small number of prototype parts with less cost and lead time than injection molding which is the most popular method to manufacture plastic parts. Generally, epoxy resin and RTV(Room Temperature Vulcanization) silicon are used as mold materials for RIM, and the selection of mold materials is usually depended upon the industrial environment of manufactures and it decides overall mold making process and part quality. This paper suggests a new mold making process by consolidating the advantages of epoxy resin and RTV silicon based RIM mold to enhance the parts quality while reducing the manufacturing cost and time and shows the competitiveness of the suggested process compared with conventional methods.

  • PDF

Effects of Molding Condition on Surface Unevenness of GMT-Sheet Moldings (GMT-Sheet 성형품의 표면요철에 미치는 성형조건의 영향)

  • Kim, Hyoung-Seok;Kim, Jin-Woo;Kim, Yong-Jae;Lee, Dong-Gi
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.30-38
    • /
    • 2010
  • Observing of GMT-Sheet in molding conditions, we have investigated unexpected phenomenons of moldings surface. In microscope investigation, we observe that there exist deficiencies on the surface of GMT-Sheet moldings, such as the spherulite, fiber projection, crack, fiber exposure, micro-weldline, pinhole and winding. They are caused to arise unevenness and phenomenons influence polish on surface. Especially, the major cause of the unevenness, effected to surface roughness, is a shrinking of matrix in the process of holding pressure and cooling temperature. The higher holding pressure load in a molding process and the lower demolding temperature in an annealing experiment, the better GMT-Sheet moldings improved its appearance.

A study on the reduction method of sink marks for plastic products with T-shape (T자형 단면형상을 가진 성형품의 싱크마크 불량 감소 방안에 대한 연구)

  • Kim, Da-Eun;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.22-26
    • /
    • 2018
  • In the automotive industry these days, plastic parts have been developed and replaced with plastic parts by maintaining the same function of existing press parts for a variety of reasons. Injection molding plastic parts are subject to molding defects due to various factors, among which the sink marks usually occur in the areas where bosses and ribs are installed. In this study, we analyzed the influence of various factors on the occurrence of sink marks by using the flow analysis of the forming analysis program(Moldflow analysis) using the rib model with the T-shape. Tests have shown that the greatest influence on the sink mark of cosmetic products is the thickness and pressure of the ribs, and the thickness of the basic moulding thickness of the product increases. However, it was considered that the resin temperature and the mold temperature do not greatly affect the occurrence of the sink mark.

A Study on the Prediction of Optimized Injection Molding Condition using Artificial Neural Network (ANN) (인공신경망을 활용한 최적 사출성형조건 예측에 관한 연구)

  • Yang, D.C.;Lee, J.H.;Yoon, K.H.;Kim, J.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.218-228
    • /
    • 2020
  • The prediction of final mass and optimized process conditions of injection molded products using Artificial Neural Network (ANN) were demonstrated. The ANN was modeled with 10 input parameters and one output parameter (mass). The input parameters, i.e.; melt temperature, mold temperature, injection speed, packing pressure, packing time, cooling time, back pressure, plastification speed, V/P switchover, and suck back were selected. To generate training data for the ANN model, 77 experiments based on the combination of orthogonal sampling and random sampling were performed. The collected training data were normalized to eliminate scale differences between factors to improve the prediction performance of the ANN model. Grid search and random search method were used to find the optimized hyper-parameter of the ANN model. After the training of ANN model, optimized process conditions that satisfied the target mass of 41.14 g were predicted. The predicted process conditions were verified through actual injection molding experiments. Through the verification, it was found that the average deviation in the optimized conditions was 0.15±0.07 g. This value confirms that our proposed procedure can successfully predict the optimized process conditions for the target mass of injection molded products.

A Study on Pressing Conditions in the molding of Aspheric Glass Lenses for Phone Camera Module using Design of Experiments (DOE를 적용한 카메라폰 모듈용 비구면 Glass 렌즈의 가압성형조건 연구)

  • Kim, Hye-Jeong;Cha, Du-Hwan;Lee, Jun-Key;Kim, Sang-Suk;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • This study investigated the pressing conditions in the molding of aspheric glass lenses for the mega pixel phone camera module using the DOE method. Tungsten carbide (WC; Japan, Everloy Co., 002K),which contained 0.5 w% cobalt (Co), was used to build the mold. The mold surface was ultra-precision ground and polished, and its form accuracy (PV) was 0.85um in aspheric surface. We selected four factors, pressing temperature, force and time of first step, and force of second step, respectively, as the parameters of the pressing process. in order to reduce the number of experiments, we applied fractional factorial design considering the main effects and two-way interactions. The analysis results indicate that the only two main effects, the pressing temperature and the time of pressing step 1, are available for the form accuracy (PV) of the molded lens. The analysis results indicated that the best combination of the factors for lowering the form accuracy(PV) value of molded lens was to have them at their low levels.

The Magnetic Properties Anisotropic Sr-Ferrite Bonded Magnet Produced by Extrusion Molding (압출 성형에 의한 이방성 Sr-페라이트 본드 자석의 자기적 특성)

  • 박범식;김윤배;정원용
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.5
    • /
    • pp.310-316
    • /
    • 1996
  • In this study magnetic properties of anisotropic ferrite bonded magnets produced by extrusion molding with a variety of magnetic field, extrusion mold temperature and extrusion rate were investigated. X-ray diffraction study showed the alignment of magnetic powder was decreased by molten flow in extrusion mold. When the temperature of extrusion mold was $20^{\circ}C$, the degree of alignment as much as 82% could be achieved under the applied magnetic field of 4 kOe. The bonded magnets having the remanence of 2.2 kG was able to fabricated by extrusion molding when the packing density of Sr-ferrite powder was 50 vol%.

  • PDF

A multi-field CAE analysis for die turning injection application of reservoir fluid tank (리저버 탱크의 Die Turning Injection 적용을 위한 Multi-field CAE 해석)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, die turning injection(DTI) mold design for manufacturing reservoir fluid tanks used for cooling in-vehicle batteries, inverters, and motors was conducted based on multi-field CAE. Part design, performance evaluation, and mold design of the reservoir fluid tank was performed. The frequency response characteristics through modal and harmonic response analysis to satisfy the automotive performance test items for the designed part were examined. Analysis of re-melting characteristics and structural analysis of the driving part for designing the rotating die of the DTI mold were performed. Part design was possible when the natural frequency performance value of 32Hz or higher was satisfied through finite element analysis, and the temperature distribution and deformation characteristics of the part after injection molding were found through the first injection molding analysis. In addition, it can be seen that the temperature change of the primary part greatly influences the re-melting characteristics during the secondary injection. The minimum force for driving the turning die of the designed mold was calculated through structural analysis. Hydraulic system design was possible. Finally, a precise and efficient DTI mold design for the reservoir fluid tank was possible through presented multi-field CAE process.

Sintering Distortion of Barrier Ribs Formed via Capillary Molding Route

  • Chang, Tae-Jung;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.362-364
    • /
    • 2003
  • In this study, sintering behavior of closed-cell type barrier ribs formed via capillary molding route was examined. Sintering of the molded barrier ribs revealed asymmetric shrinkage, leading to distortion of the cells. The effects of the parameters such as solid loading in the paste, presintering temperature, and morphology of the barrier ribs on the sintering shrinkage of the barrier ribs were investigated.

  • PDF