• 제목/요약/키워드: Molding Temperature

검색결과 765건 처리시간 0.034초

사출 금형의 능동형 온도제어에 따른 사출특성에 관한 연구 (A Study on Injection Characteristic using Active Temperature Control of Injection mold)

  • 조창연;신홍규;홍남표;서영호;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.302-305
    • /
    • 2007
  • In recent years, many researches on new storage media with high capacity and information are developing. For manufacture of optical storage with high capacity, the injection molding process is generally used. In order to increase the filling ratio of the injection molding structure, the injection molding process required for high injection pressure, packing pressure and temperature control of the mold. However, conventional injection molding process is difficult to increase the filling ratio using injection master with the range of several nanometers and high aspect ratio. In order to improve and increase filling ratio of nano-structure with high aspect ratio, the active temperature control of injection mold was used. Experimental conditions were used injection pressure, time and temperature. Consequently, by using the peltier device into injection mold, we carried out the efficient and active temperature control of mold at low cost.

  • PDF

금형온도와 탈지조건이 사출성형에 의한 알루미나 부품 제조에 미치는 영향 (EFfect of Molding Temperature and Debinding Conditions on Fabrication of Alumina Component by Injection Molding)

  • 임형택;임대순
    • 한국세라믹학회지
    • /
    • 제32권5호
    • /
    • pp.559-566
    • /
    • 1995
  • Alumina powder was coated with stearic acid and then mixed with isotactic polypropylene, atactic polypropylene as binders at 15$0^{\circ}C$ for 2 hours. The mixture was then injection molded at various mold temperatures using injection molding machine to investigate the effect of the molding temperature and debinding parameters on the formation of the defects. The molded specimens were debinded in both air and nitrogen atmospheres. Wicking and solvent methods were also used to enhance debinding efficiency. The specimens were prefired at 120$0^{\circ}C$ and then sintered at 150$0^{\circ}C$ for 3 hours. Various defects were formed at mold temoperature of 3$0^{\circ}C$, 6$0^{\circ}C$ and 10$0^{\circ}C$ and any noticeable defect was not formed at 85$^{\circ}C$. The density of green body increased with mold temperature. Debinding in air atmosphere was more effective than in nitrogen atmosphere. Results also proved that wicking and solvent treatments helped minimize the number of defects.

  • PDF

사출금형을 이용한 비구면 렌즈의 제조기술에 관한 연구 (A Study on the Manufacturing Technology of the Aspheric Lens using Injection Molding)

  • 최헌종;이석우;강은구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.76-83
    • /
    • 2002
  • The injection molding of the plastic optics is basically same as the conventional molding except it requires very intricate control of all the molding processing parameters. In the plastic optics, the problem of injection molding is the shrinkage. The shrinkage must be removed and predicted. This shrinkage is becoming more important than any other problems in precision molding because it can affect the focal length of a lens or the total performance of the optical system. This study focused on avoiding the shrinkage that the mold design allows for the optics. In making mold, the surface accuracy(P-V) of the lower and lower mold are $0.201{\mu}m\;and\;0.434{\mu}m$ respectively. A surface roughness(Ra) is below $0.02{\mu}m$ due to selecting the appropriate tools and using the injection molding machine in high degree. In injection molding of the plastic lens, mold temperature, resine temperature and injecting pressure are important process parameters. Injection molding process is carried out according to varying mold temperature and injecting pressure. As a result P-V(peak to valley) of spheric lens is $3.478{\mu}m$ and that of aspheric lens is $1.786{\mu}m$.

  • PDF

내압력.온도센서를 갖는 표준 인장시편용 사출금형설계 및 성형 (Design of Injection Mold with Cavity Pressure/Temperature Sensors and Molding for Standard Tensile Test Specimen)

  • 이도명;한병기;이옥성;이성희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1416-1419
    • /
    • 2005
  • Design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed in the present study for tensile test specimen. Standards of mold-base and tensile test specimen were used to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of injection mold machine to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and polycarbonate tensile specimens were prepared for the tensile test. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.

  • PDF

Effects of Molding Pressure and Sintering Temperature on Properties of Foamed Glass without Blowing Agent

  • Kim, EunSeok;Kim, Kwangbae;Lee, Hyeryeong;Kim, Ikgyu;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.178-183
    • /
    • 2019
  • A process of fabricating the foamed glass that has closed pores with 8 ~ 580 ㎛ sizes without a blowing agent by sintering 10 ㎛ boron-free glass powder composed of CaO, MgO, SO3, Al2O3-83 wt% SiO2 at a molding pressure of 0 ~ 120 MPa and a sintering temperature of 750 ~ 1000℃ was investigated. To analyze the glass transition temperature of glass powder, thermogravimetric analysis-differential thermal analysis (TGA-DTA) method were used. The microstructure and pore size of foamed glass were examined using the optical microscopy and field emission scanning electron microscopy (FE-SEM). For the thermal diffusivity and color of the fabricated samples, a heat flow meter and ultraviolet-visible-near-infrared (UV-VIS-NIR)-colormetry were used, respectively. In the TGA-DTA result, the glass transition temperature of glass powder was confirmed to be 626℃. In the microstructure result, closed pores of 7 ~ 20 ㎛ were formed at 750 ~ 900℃, and they were not affected by the molding pressure and sintering temperature. However, at 1,000℃, when there was 0 MPa molding pressure, closed pores of 580 ㎛ were confirmed, and the pore size decreased as the molding pressure increased. Moreover, at a molding pressure of 30 MPa or higher, closed pores of approximately 400 ㎛ were formed. The porosity showed an increasing trend of smaller molding pressure and larger sintering temperature, and it was controllable in the range of 5.69 ~ 68.45%. In the thermal diffusivity result, there was no change according to the molding pressure, and, by increasing the sintering temperature, up to 0.115 W/m·K could be obtained. The Lab color index (CIE-Lab) results all showed a similar translucent white color regardless of molding pressure and sintering temperature. Therefore, based on the foamed glass without boron and blowing agent, it was confirmed that white foamed glass, which has closed pores of 8 ~ 580 ㎛ and a thermal diffusivity characteristic of 0.115 W/m·K, can be fabricated by changing the molding pressure and sintering temperature.

사출 성형품의 수지에 따른 최적의 온도에 대한 연구 (A study on optimum temperature depending on resin of injection molded parts)

  • 조성기;한성렬
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.12-16
    • /
    • 2019
  • For optimal injection molding, various molding conditions should be combined well. Therefore, engineers should be thoroughly familiar with mold design, fabrication, and injection molding. The choice of resin among the various molding conditions is closely related to the productivity of the molded part and the deformation after molding, so the engineer must select the appropriate resin. Engineers work on the basis of data provided by resin manufacturers during molding. However, in actual molding work, it is necessary to apply values slightly different from those provided to obtain molded articles of desired performance. In this study, various deformations of molded products were compared with respect to crystalline resin and amorphous resin when molded according to the data provided by the resin maker and molded at the changed values at the work site.

사출성형의 냉각 파라미터가 플라스틱 롤러의 수축에 미치는 영향 (The effect of injection molding cooling parameters on shrinkage of plastic roller)

  • 조성기;한성렬
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.8-13
    • /
    • 2021
  • A plastic roller for opening and closing the safety door of the injection molding machine was molded. The dimensional change of the measurement position of the roller was studied when the cooling time was applied differently among the molding conditions, and when the temperature of the coolant applied for mold cooling was also applied differently. Cooling times of 300 seconds and 400 seconds, hot and low-temperature coolant were applied. When the low-temperature coolant was applied, the measuring point of the roller shrank by 0.03 mm. However, when the high-temperature coolant was applied, the measuring point shrank by 0.3 mm. It was found that the application of low-temperature coolant among coolants was more suitable for the reference dimension of the molded article compared to the application of high-temperature coolant. Among the cooling water applied for the molding of plastic rollers, when high-temperature coolant is applied, the shrinkage rate measured immediately after ejection was smaller than when low-temperature coolant is applied. However, it was found that post shrinkage, which occurs over time, occurs much larger when high-temperature coolant is applied.

금형온도제어에 대한 실천공학모형 연구 (A Study on Practical Engineering Model for Tool Temperature Control)

  • 신주경
    • 실천공학교육논문지
    • /
    • 제10권2호
    • /
    • pp.89-94
    • /
    • 2018
  • 사출 성형에서 금형 온도는 성형품의 품질에 큰 영향을 준다. 어느 정도의 온도가 적정한가는 성형 재료, 성형품에서 요구되는 품질에 의해서 결정되고 중요한 것은 그 온도가 안정적이어야 한다. 먼저 그 수지에 적합한 금형 온도 조건 범위 내에서 성형품이 요구하는 품질에 맞는 금형 온도를 설정해야 한다. 즉, 성형품의 표면 광택, 성형 사이클의 단축, 변형 방지, 수축 및 수지 흐름의 용이성 등의 중요성에 의해서 금형 온도는 변화한다. 실질적인 금형 기술 향상을 위해서 사출 금형을 설계하고 제작하는 산업체에서 적용할 수 있는 온도 제어에 대한 애로 기술 과정의 훈련 모형을 제시하고자 한다.

SMC 압축성형 공정에 관한 유한요소해석 (Finite Element Analysis of SMC Compression Molding Processes)

  • 이충호;허훈
    • 소성∙가공
    • /
    • 제4권3호
    • /
    • pp.204-213
    • /
    • 1995
  • A finite element program is developed to analyze the flow phenomena in SMC compression molding as a viscoplastic model. The calculation of temperature distribution is also carried out by uncoupling the thermal analysis from the flow analysis. SMC molding processes with a flat plate substructure and the one with a T-shaped rib are considered in numerical simulation. The numerical results provide deformed shapes, temperature distribution in a SMC charge, and the forming load. The simulation of compression molding of a flat plate with a T-shaped rib requires a remeshing technique for the whole process.

  • PDF

SMS 압축성형공정의 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis of compression Molding of Sheet Molding Compound)

  • 김수영;임용택
    • 소성∙가공
    • /
    • 제4권1호
    • /
    • pp.39-47
    • /
    • 1995
  • The compression molding of SMC (sheet molding compund) at room temperature was analyzed based on rigid-viscoplastic approach by three dimensional finite element program. The developed program was tested by solving the three dimensional compression of wedge type specimens of aluminum alloys at various processing conditions. The simulation results were compared well to the experimental results available in the literature. based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC, which is a thermosetting material reinforced with chopped fiber glass. To investigate the effects of friction conditions and mold closing speeds for compression molding of SMC charge at room temperature, compressions of the cylindrical and rectangular shaped SMC were analyzed for various friction conditions and mold closing speeds. The calculated load values were compared to the experimental results for the compression molding of cylindrical specimen.

  • PDF