• 제목/요약/키워드: Molding Die

검색결과 314건 처리시간 0.02초

캐비티 온도센서를 이용한 최적 사출공정 제어 (Optimal Control of Injection Molding Process by Using temperature Sensor)

  • 박천수;강철민
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.30-33
    • /
    • 2008
  • Injection Molding is the most effective process for mass production of plastic parts. The injection molding process is composed with several steps such as Filling, Packing, Holding, Cooling, Ejecting. Among them, filling and packing process should be considered carefully to improve accuracy of dimension, surface quality of plastic parts. Usually the quality above-mentioned is managed with weight of part after molding on the field. In this paper, a series of experiment for molding automotive front bumper was conducted with cavitity temperature sensor to optimize switch-over time(V-P switching), hot runner vale gate sequence time during filling and packing step for the purpose of uniform quality, weight at every molding. As a result, it was found that it is effective method to use temperature sensor in injection molding for quality control of plastic molding.

  • PDF

사출성형 공정에서 젯팅 현상에 관한 고찰 (A Study on the Jetting Phenomena in Injection Molding Process)

  • 류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.125-131
    • /
    • 2002
  • Surface defects in injection molded parts are due to the unsteady flow of polymer melt which are related to the geometries of cavity and gate, the operational conditions of injection and the rheological properties of polymer. In this study we have examined jetting phenomena in injection molding process for three kinds of PCs which have different molecular weight and structure, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to die swell. This means that the jetting is strongly affected by the elastic property rather than the viscous property in viscoelastic characteristics of molten polymer. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mold design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and associated surface defects regardless of magnitude of elastic property. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF

보스부분 사출성형의 싱크마크 발생에 관한 연구 (A Study on Sink Marks in Injection Molding of Boss Parts)

  • 김현필;김용조
    • Design & Manufacturing
    • /
    • 제2권4호
    • /
    • pp.37-43
    • /
    • 2008
  • Supplementary features in injection molded products, which are boss, rib and snap fit, are mainly located in the products. These features might make molding flow improper in injection processing and consequently give rise to some of molding troubles such as short shot and hesitation. The sink mark on boss parts is generated by the volumetric shrinkage that is caused by both the molding thickness and the closed boss height. The volumetric shrinkage is affected by packing pressure and its amount tends to decrease by increasing the packing pressure. The packing pressure can therefore increase flow rate to a boss part and causes the sink mark depth to increase. As the molding thickness and the closed boss height in the boss part can increase the part volume, these may yield bad solidifying and also extend the molding cycle. In this paper, both the injection molding test and the flow analysis were carried out to investigate the effect of sink marks generated in the boss part of injection molded products.

  • PDF

사출성형 공정에서 비정상 흐름에 의한 Mold Filling 현상 (Analysis of Mold Filling Associated with Unsteady Flow in Injection Molding Process)

  • 류민영;신희철;배유리
    • 폴리머
    • /
    • 제24권4호
    • /
    • pp.545-555
    • /
    • 2000
  • 사출성형에서 수지의 불안정한 흐름에 의해 성형품에 표면결함이 발생되는데 이는 gate의 치수, 운전조건 그리고 고분자 용융물의 유변학적 성질과 밀접한 관련이 있다. 본 연구에서는 PC, PBT, 그리고 PC/ABS alloy에 대해 다양한 사출속도에서 성형품의 표면결함의 형성에 대해서 조사하였다. 표면결함의 형성을 조사하기 위해 여러 가지 cavity 모양, 즉 기계적 물성 측정에 쓰이는 인장, 굴곡 그리고 충격시편의 형상을 이용하여 이들의 cavity와 gate의 두께를 다양하게 하여 실험하였다. 본 연구를 통해 사출성형의 충진 과정에서 letting에 의한 표면결함은 die swell과 die swell의 지연에 크게 영향을 받음을 관찰할 수 있었다. 큰 die swell은 jetting을 없애는데 유리하나 die swell의 지연이 커지면 jetting을 촉진시킨다. Cavity와 gate의 두께 비를 작게 하면 수지의 종류에 관계없이 jetting과 표면결함을 줄이거나 없앨 수 있다. 또한 작은 두께비는 사출성형에서 고분자 용융물의 안정된 흐름을 유지시키기 위할 작업 조건들의 선택의 폭을 넓게 하여 준다.

  • PDF

인서트 코어 타입 Cap 성형용 대용량 금형 제작에 관한 연구 (Fabrication of large-capacity injection mold with the insert core for molding cap)

  • 정우철;허영무;신광호;윤길상;이정원
    • Design & Manufacturing
    • /
    • 제2권3호
    • /
    • pp.16-21
    • /
    • 2008
  • In recent, the demands of household cases and disposable products is increased significantly because a living standard of newly-emerging nations was risen. Therefore, multi-cavity mold and stack mold for the realization of high-productivity have been researched in forefront nations. In this paper, CAE analysis for minimizing the mold core deformation was performed. Finally, 64 cavities injection mold for molding cap which has the insert-type core was fabricated according to the result of CAE analysis.

  • PDF

DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구 (A study on the manufacturing of metal/plastic multi-components using the DSI molding)

  • 하석재;차백순;고영배
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

성형조건에 따른 캐비티 내압 측정 및 컴퓨터 모사 (A study on the measurement of cavity pressure and computer simulation)

  • 김동우;김수영;신광수;김도운;김기윤;류민영
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.163-166
    • /
    • 2008
  • Injection molding operation consists of filling, packing, and cooling phase. The highest pressure is involved during the packing phase among the operation phases. Cavity pressure depends upon velocity to pressure switchover time and magnitude of packing pressure. The cavity pressure is directly related to stress concentration in the cavity of mold. Thus the observation and control of cavity pressure is very important to prevent mold cracking. In this study, cavity pressures were observed for operational conditions using the commercial CAE software,Moldflow. Operational conditions were velocity to pressure switchover time and packing pressure. Cavity pressures were also measured directly during injection molding. Simulation and experimental results showed good agreement.

  • PDF

리저버 탱크의 Die Turning Injection 적용을 위한 Multi-field CAE 해석 (A multi-field CAE analysis for die turning injection application of reservoir fluid tank)

  • 이성희
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, die turning injection(DTI) mold design for manufacturing reservoir fluid tanks used for cooling in-vehicle batteries, inverters, and motors was conducted based on multi-field CAE. Part design, performance evaluation, and mold design of the reservoir fluid tank was performed. The frequency response characteristics through modal and harmonic response analysis to satisfy the automotive performance test items for the designed part were examined. Analysis of re-melting characteristics and structural analysis of the driving part for designing the rotating die of the DTI mold were performed. Part design was possible when the natural frequency performance value of 32Hz or higher was satisfied through finite element analysis, and the temperature distribution and deformation characteristics of the part after injection molding were found through the first injection molding analysis. In addition, it can be seen that the temperature change of the primary part greatly influences the re-melting characteristics during the secondary injection. The minimum force for driving the turning die of the designed mold was calculated through structural analysis. Hydraulic system design was possible. Finally, a precise and efficient DTI mold design for the reservoir fluid tank was possible through presented multi-field CAE process.

자동차 도어 래치 성형용 파인 블랭킹 금형의 다이 챔퍼 형상에 따른 다이 롤 크기 변화에 대한 연구 (A study on the change of die roll size by the shape of die chamfer in fine blanking die for automobile door latch)

  • 김종덕;김흥규
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.565-570
    • /
    • 2011
  • 본 연구는 파인 블랭킹(fine blanking) 프레스로부터 기능면으로 사용되는 100% 매끄러운 전단면을 얻는 파인 블랭킹 공정에서 다이 롤(die roll) 크기를 최소화하기 위한 목적으로 실험을 통해 다이 챔퍼(die chamfer) 형상에 따라 성형되는 제품의 다이 롤 크기 변화를 검토한 것이다. 다이 챔퍼가 다른 여러 가지 다이 편(die insert)을 제작하여 파인 블랭킹 실험을 실시한 후 다이 챔퍼 형상에 따른 다이 롤 크기를 측정 분석하여 두께 방향 다이 롤 크기의 경향을 파악하였다. 이 연구 결과는 파인 블랭킹 판재 성형에서 두께 방향 다이 롤 크기를 최소화하기 위한 다이챔퍼 설계에 유용하게 적용될 것으로 판단된다.

다수캐비티 사출금형에서 충전 불균형이 성형 품질에 미치는 영향 (The Effect of Filling Imbalances on the Molding Quality in the Multy-Cavity Injection Mold)

  • 한동엽;정영득
    • Design & Manufacturing
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2013
  • The injection molding process is a predominant method for producing plastic parts. In order to maximize productivity and molding quality in a injection mold, it is important that each cavity in a multi-cavity injection mold is identical. This requires that cavity dimensions should be identical and delivery system of melt to each cavity have to be the same. Despite the geometrically balanced layout in multi-cavity injection mold more than 4 cavities, it has been observed that the filling in each cavity results in imbalances. Most of cases, this phenomenon of filling imbalances have a bad effect on dimension accuracy, warpage, molding appearance and strength of molding parts. In this study, experiment were conducted to investigate the effect of filling imbalances on the molding quality(surface gloss, shrinkage, tensile strength) in the multy-cavity injection mold.

  • PDF