• Title/Summary/Keyword: Molded case circuit breaker

Search Result 49, Processing Time 0.031 seconds

An Influence of Material of Metal Grid for Interrupting Property (MCCB내부 금속 그리드 재질이 차단성능에 미치는 영향)

  • Kim, Kil-Sou;Yoon, Jae-Hun;Lim, Gee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.101-101
    • /
    • 2010
  • Power distribution system requires the transformer with higher capacity than ever, but this ever, but this may be the cause of the increasing of short circuit current in contrast to conventional one when short-circuit accident is occurred. Therefore molded case circuit breaker improved in aspects of interrupting capacity of short circuit current in this system is needed. The arrangement and quality of the material of grids in arc quenching room are also designed optimally by the analysis of arc driving forces.

  • PDF

A Study on FMECA Application to Life Time Test of MCCB (배선용 차단기 수명평가를 위한 FMECA 적용 방안에 대한 연구)

  • Seo, Jung-Youl;Shin, Hee-Sang;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2063_2064
    • /
    • 2009
  • Recently, load circuits and components of customer are various. Therefore failures of ELB(Earth Leakage Breaker) and MCCB(Molded case circuit breakers) are more frequent. Lite time of MCCB even if there is same units differ from environment, condition of operation. FEMCA is a efficiency method of system operation or maintenance for system reliability. We study on FMECA procedures and method. In this paper, we focused on FMECA application to MCCB life time test.

  • PDF

Dynamic Motion Analysis of a Moving Contact by Electromagnetic Repulsion Force in MCCB (3D FEM해석을 통한 배선용 차단기의 가동자 거동해석)

  • Song, Jung-Chun;Kim, Yong-Gi;Ryu, Man-Jong;Seo, Jung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.786-789
    • /
    • 2002
  • The behaviour of contactors protected by arcs under short-circuit currents is analysed using a simple model to represent the electric circuit and the contactor. In most cases, the protection of contactors against short-circuit currents is entrusted to fuses. Fuses are suitable for preventing excessive damage to the contactor, or parts of the contactor, under short-circuit conditions. In particular, they are capable of limiting the thermal and electrodynamic stresses which can lead to arcing or welding together of the contacts of a contactor. This paper is the Dynamic Motion Analysis of a Moving Contact by Electromagnetic Repulsion Force in Molded Case Circuit Breaker(MCCB)

  • PDF

The Causes and Analysis of Electrical Fires -focused on Dynamic Characteristics of RCD- (전기화재의 발생원인 및 분석 -누전차단기의 동작특성을 중심으로-)

  • 이상호
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.1-5
    • /
    • 2003
  • Recently, the occurrences of electrical fire have been suppressed by a residual current protective devices(RCD), a molded case circuit breaker(MCCB) and a fuse in case of an earth leakage, a short circuit and an over current. But it is impossible for the RCD to break the circuit in the case of the conductor fractures, the failure of pressure contacts on connecting points and the momentary short circuit of low voltage wiring. Therefore, it is require to study the constructive problem of the RCD. In this paper, we have tested the operation characteristics of the RCD according to the R load and R-L load in the conductor fractures, the failure of pressure contacts on connecting points and the momentary short circuit of low voltage wiring.

Electric Safety Protection Device of High Speed for Incapable Operation of ELB and MCCB Using the Low Voltage Distribution Line (저압 배전선로의 누전 및 배선용 차단기의 오동작 방지를 위한 고속형 전기안전 보호장치)

  • Kwak, Dong-Kurl;Jung, Do-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1925-1929
    • /
    • 2007
  • This paper is studied on a novel Electric Safety Protection Device (ESPD) of high speed for incapable operation of Earth Leakage Circuit Breaker (ELB) and Molded_case Circuit Breaker (MCCB) using the low voltage distribution line. The major causes of electrical fire are classified to short circuit fault, overload fault, electric leakage and electric contact failure. The occurrence factor of the fire is electric arc or spark accompanied with electrical faults. Residual Current Protective Device (RCD), that is ELB and MCCB, of high sensitivity type used at low voltage wiring cuts off earth leakage and overload, but the RCD can't cut off electric arc or spark to be a major factor of electrical fire. As the RCDs which are applied low voltage distribution panel are prescribed to rated breaking time about 30[ms] (KS C 4613), the RCDs can't perceive to the periodic electric arc or spark of more short wavelength level. To be improved on such problem, this research development is proposed to a novel ESPD of high speed to trip of distribution line on electric arc or spark due to electrical fire. Some experimental results of the proposed ESPD are confirmed to the validity of the analytical results.

Development of Arc Fault Interruption Control Circuit of Fault Voltage Sensing Type (사고전압 감지형 아크차단 제어회로 개발)

  • Kwak, Dong-Kurl;Byun, Jae-Ki;Lee, Bong-Seob
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.1-5
    • /
    • 2013
  • This paper studies on an arc fault interruption control circuit (AFICC) of fault voltage sensing type. The proposed voltage sensing type AFICC (VST_AFICC) is an electrical fire prevention apparatus that operates the existing circuit breaker with sensing the instantaneous voltage drop of line voltage when occurs electrical faults. The existing Earth Leakage Circuit Breaker (ELB), Molded_case Circuit Breaker (MCCB), and Residual Current Protective Devices (RCDs) used in low voltage distributing system don't have protective capability from electric arc faults to be a major factor of electrical fire. In this paper to improve such problems, a new VST_AFICC using the distortion of voltage waveform when occurs electrical faults is proposed to prevent electrical fire. There is characteristic that the control method of proposed apparatus is different from previous current sensing type. The proposed AFICC has merit that is manufactured by small size and light weight. The practicality of a new VST_AFICC is also verified through various operation analysis.

A Study on Improving Arc Quenching Performance of MCCB by FEM (유한요소법을 이용한 배선용 차단기의 아크소호 성능향상에 관한 연구)

  • Kim, Kil-Sou;Lim, Kee-Joe;Kang, Seong-Hwa;Cho, Hyun-Kil;Lee, Gang-Won;Park, Jung-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.51-54
    • /
    • 2001
  • This Paper is described basic principles of arc quenching in Molded Case Circuit Breaker. We analyzed magnetic blowout forces acting on the arc in contact system when circuit breakers interrupt fault currents in different three models by 3-D FEM(Finite Element Method). The interrupting time simulated is compared with that of short circuit tests. The results of this study derive valid of the simulation method and present the techniques to improve arc quenching performance.

  • PDF

Analytic Estimation of Interrupting capability on contact system in MCCB (배선용 차단기(MCCB) 차단성능 평가해석 기법)

  • Choi, Y.K.;Chong, J.K.;Kim, I.Y.;Park, I.H.;Hwang, G.C.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.628-632
    • /
    • 2002
  • Low voltage circuit breakers which interrupt rapidly and raise the reliability of power supply are widly used in power distribution systems. In the paper, it was investigated how much Interrupting capability was improved by correcting the shape of the contact system in molded case circuit breaker(below MCCB), especially arc runner. Prior to the interrupting testing, it was necessary for the optimum design to analyze electromagnetic forces on the contact system, generated by current and flux density. This paper presents both our compuational analysis and test results on contact system in MCCB

  • PDF

Eddy Current Analysis of Magnetic Plate to Increase Magnetic Force in MCCB (배선용차단기의 구동자계 증가를 위한 자성체 구조물의 와전류 해석)

  • Lee, Se-Yeon;Baek, Myung-Ki;Lee, Bo-Ram;Kim, Young-Sun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.909-910
    • /
    • 2007
  • To design the Molded Case Circuit Breaker(MCCB) requires electromagnetic analysis in contact system when the circuit breakers interrupt fault currents. This paper has made sure that there are two ways increasing arc driving force, one is a change of contact point and the other way inserts additionally the magnetic plate. Finally, we have carried out the analysis of eddy current to identify a decrease of arc driving force because of fault currents. In this paper, MCCB models have been analyzed base on 3D-FEM by Maxwell program.

  • PDF

Research on Characteristics of Arcing Circuit and Evaluation of Societal Cost caused by AFCI Installation (아크 회로의 특성 분석 및 AFCI 설치로 인한 사회적 비용평가에 관한 연구)

  • Park, Chee-Hyun;Bae, Suk-Myeong;Lim, Yong-Bae;Kim, Gi-Hyun;Choi, Myung-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.144-150
    • /
    • 2007
  • As usage of electric power is increased, the electric fire accident occurrences are growing, too. According to statistics it can be known that electric fire occupies the most weight. However, the method that can detect electric fire accurately is not being developed yet. This paper analyzes the cause of electric fire and the characteristics of Arc Fault Circuit Interrupter(AFCI). First this paper compares AFCI with existing molded-case circuit breaker and finds the hazards caused by arc through power calculation and compares with danger by short circuit. And we suggest the necessity of AFCI through studying relationship of AFCI installation and societal cost.