• Title/Summary/Keyword: Molded Case Circuit Breaker

Search Result 49, Processing Time 0.033 seconds

Development of electric safety control system for incapable operation of ELB and MCB using the low voltage distribution line (저압 배전선로의 누전 및 배선용 차단기의 오동작 방지를 위한 전기안전 제어장치 개발)

  • Kwak, Dong-Kurl;Shin, Mi-Young;Jung, Do-Young;Kim, Hyo-Jin;Baek, Seong-Hyun;Choi, Byung-Seub
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.371-372
    • /
    • 2007
  • The major causes of electrical fire are classified to short circuit fault, overload fault, electric leakage and electric contact failure. The occurrence factor of the fire is electric arc or spark accompanied with electrical faults. Residual Current Protective Device (RCD), that is Earth Leakage Circuit Breaker(ELB) and Molded_case Circuit Breaker (MCB), of high sensitivity type used at low voltage wiring cuts off earth leakage and overload, but the RCD can't cut off electric arc or spark to be a major factor of electrical fire. As the RCDs which are applied low voltage distribution panel are prescribed to rated breaking time about 30[ms] (KS C 4613), the RCDs can't perceive to the periodic electric arc or spark of more short wavelength level. To be improved on such problem, this research development is proposed to a auxiliary control apparatus for RCD trip on electric arc or spark due to electrical fire. Some experimental results of the proposed apparatus is confirmed to the validity of the analytical results.

  • PDF

225[AF]/200[A]/50[kA] 배선용 차단기 고정자 변화를 통한 차단용량 향상

  • Lee, Seung-Su;Yun, Jae-Hun;Jeong, Ui-Hwan;Im, Gi-Jo;Gang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.221-221
    • /
    • 2009
  • This paper is focused on understanding the interrupting capability, more specifically of the fix contact, based on the shape of the contact system in the current MCCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCCB.

  • PDF

A Basis Study for Life Time Test of MCCB (배선용 차단기 수명평가를 위한 기초 연구)

  • Seo, Jung-Youl;Shin, Hee-Sang;Kim, Oh-Hwan;Kim, Jae-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.439-441
    • /
    • 2009
  • Recently, load circuits and components of customer are various. Therefore failures of ELB(Earth Leakage Breaker) and MCCB(Molded case circuit breakers) are more frequent. Lite time of MCCB even if there is same units differ from environment, condition of operation. FEMCA is a efficiency method of system operation or maintenance for system reliability. We study on FMECA procedures and method. In this paper, we focused on FMECA application to MCCB life time test.

  • PDF

Effect on Molded Case Circuit Breaker of Harmonic Current (고조파 전류가 배선용차단기에 미치는 영향)

  • Yoo, Jae-Geun;Choi, Myung-Il;Park, Chee-Hyun;Son, Jae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.53-58
    • /
    • 2008
  • This paper analyze the operating characteristic of MCCB due to the synthesize harmonic current. Four types of MCCBs, divided by the type of operation system and a principle of operation, tested with 200[%] of rated current. The test result nuisance tripping did not occur but the time delay characteristic of the hydraulic magnetic type MCCB is appeared. From the place where the synthesize harmonic content is high it is good the hydraulic magnetic type MCCB not to use.

Identification of Tracking Conduct Wiring Using Neural Networks (인공신경망을 이용한 전기배선의 트랙킹 식별에 관한 연구)

  • 최태원;이오걸;김이곤
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 1998
  • In this paper, a method which cna detect tracking caused by the insulation deterioration of conduct wiring, is proposed. To investigate it, we analyzed the harmonics of each load current waveform and those of tracking current waveform with FFT. The computer which take experiment data is learned by neural network algorithm, which has recently been used for the load recognition. The proposed metod in our study can be applied to the development of several measuring equipments such as hotline insulation tester, cna earch tester for the detection of tracking under hot-line state, Furthermore, it can substitutes molded case circuit breaker, fuse, and so on.

  • PDF

Study on the Dynamic Modeling of a MCCB Mechanism Including Electro-Magnetic Force Effect (전자기력의 영향을 포함한 MCCB 기구부의 동역학적 모델링 방법 연구)

  • Gang, Gyeong-Rok;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.362-368
    • /
    • 2001
  • To design a limiting MCCB (Molded Case Circuit Breaker) mechanism, a dynamic modeling of the mechanism in which the electro-magnetic force effects are incorporated needs to be developed. Conventionally, electro-magnetic effects were considered separately for the design of the mechanism. In this paper, an electro-magnetic force that is induced by limited current is identified and included in the dynamic modeling of the mechanism. Thus, the electro-magnetic which is defined as a external force and the mechanical effects are simultaneously considered for the design of the mechanism which is composed of contactor, spring , link, latch and so on.

Analysis of Electrical Accident for Outlet Circuit of Laboratory on ETA (ETA를 통한 연구실험실 콘센트회로의 전기재해 분석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Park, Jong-Young;Kim, Sang-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • This study is intended to identify issues on the basis of investigating the actual state of laboratory environment and outlet circuit, and derive end states by expressing sequences from the initiating event of disaster to accident in leakage current, poor contact and overload through ETA(event tree analysis). To this end, this study investigated the actual state of electric equipment of laboratory at universities in all parts of country. And it is shown that most of them are failure in electric work and user negligence in the investigation of actual state. It is found that there is earth fault and defect in wire diameter in the failure of electric work and the problem of partial disconnection due to wire bundling and poor contact in user negligence. Outlet-related component, failure rate and initiating events are composed of a total of 41 initiating events, i.e., 30 internal initiating events and 11 external initiating events. And end states are composed of a total of 15 parts, i.e., 3 electric power parts and 12 safety parts. Earthing class 3 is the most important safety device against leakage current (initiating event). And in case of poor contact, it is necessary for manager to check thoroughly because there is no safety device. In case of overload/overcurrent, when high-capacity equipment is connected, a molded case circuit breaker, safety device, worked. However, in most cases, it is verified that this doesn't work. This study can be utilized as electric equipment safety guide for laboratory safety manager and managers.

Effects of Contact Resistance on temperature Rise in a MCCB (접촉저항이 배선용 차단기 내부 온도상승에 미치는 영향)

  • 박성규;이종철;김윤제
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.12-19
    • /
    • 2004
  • A Molded Case Circuit Breaker (MCCB) is an electric control device to interrupt the abnormal currents which result from the over-loads or short-circuits. Its malfunction will result in severe accidents. In the development of the MCCB, higher current-rating and improved thermal performance become more and more important in providing the safe function and reliability for the modern devices requiring small scale and high performance. It is also very important to consider the factors of temperature rise in the design of MCCB. The major reasons of temperature rise in the MCCB result from the resistances, which are come from the connection and contact surfaces. These resistances are influenced by current, time, configuration of contact surfaces and applied voltage. In order to predict the temperature distribution inside MCCB, we have simulated the model with some assumptions and simplifications, using commercial code ICEPAK. To verify the results of temperature field analysis, the numerical results are compared with experimental ones for the same model. The results show a good agreement with actual temperature rise obtained by experiments.

Carbonization Patten and Operation Characteristics of a 1Φ 2 W MCCB Damaged by PCITS (PCITS에 의해 소손된 1Φ 2 W MCCB의 탄화 패턴 및 작동 특성)

  • Lee, Jae-Hyuk;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.8-13
    • /
    • 2014
  • The purpose of this study is to analyze the damage pattern when overcurrent is applied to a thermal magnetic type molded case circuit breaker (MCCB) using a Primary Current Injection Test System (PCITS). When an overcurrent of 150 A was applied to the PCITS for 5 seconds with the trip bar of an MCCB being damaged, it was found that the surface of the temperature control device (bimetallic strip) positioned at the right was significantly carbonized. When an overcurrent of 300 A was applied to the PCITS for 5 s under the same conditions, the entire temperature control device was deteriorated, becoming flattened and in close contact with the MCCB. When an overcurrent of 450 A was applied to the PCITS for 5 s, the coil of the temperature control device was melted and disconnected. In addition, it was observed that the contacts, the enclosure and upper cover were deformed and there was a trace of carbonization on them. When approximately 3 s had elapsed after an overcurrent of 600 A was applied, white smoke occurred inside the MCCB and a flame was radiated out, after which the overcurrent supply stopped with "phutt" (whomp) sound. It was observed that when the same type of MCCB is damaged by a general flame, the surfaces of its handle, terminal, arc divider (extinguisher) and temperature control device were carbonized uniformly. In addition, it was found that the trip bar of the operating mechanism was melted down and the metal operation pin was moved while being tripped.