• Title/Summary/Keyword: Mold steel

Search Result 302, Processing Time 0.02 seconds

An experimental study of the strength and internal structure of solder joint of fixed partial denture (가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Sang-Nam;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.23 no.1
    • /
    • pp.39-59
    • /
    • 1985
  • The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

  • PDF

Influence of resin-nanoceramic CAD/CAM block shade and thickness on the microhardness of dual-cured resin cement (레진-나노세라믹 CAD/CAM블록의 색조와 두께가 이원중합 레진시멘트의 미세경도에 미치는 영향)

  • Choi, Ga-Young;Park, Jeong-Kil;Jin, Myoung-Uk;Kwon, Yong Hoon;Son, Sung-Ae
    • Korean Journal of Dental Materials
    • /
    • v.44 no.2
    • /
    • pp.151-161
    • /
    • 2017
  • The purpose of this study was to examine the effect of shade and thickness of resin-nanoceramic CAD-CAM block (RNB) on the microhardness of dual-cured resin cement, as well as to measure the number of photons transmitted through RNBs of different thicknesses and colors. One dual-cured resin cement was used to prepare resin cement specimens. Resin cement specimens were light-cured for 40 seconds through 3 shades (A1, A2, A3 in HT (high translucency) and LT (low translucency) respectively) and four thicknesses (1, 2, 3, 4 mm) of RNB specimens. Vickers microhardness measurements of resin cement specimens were performed using a Vickers hardness tester. The light transmission of RNB specimens was measured using a spectrometer (SpectroPro-500, Acton Research, Acton, MA, U.S.A.), and the translucency parameter was calculated using the CIEL*a*b* system. Data were statistically analyzed by ANOVA and Tukey's test. There was a significant decrease of microhardness of resin cement specimen with an overlay of 4 mm of RNB thickness and A3 shade in comparison to A1 and 1 mm, respectively (p<0.05). The translucency parameter values and light transmission of RNBs tested differed significantly, according to the thicknesses of the specimen (p<0.05). Light transmission is decreased with increase in the thicknesses of RNBs. Shade A1 transmitted more light than darker blocks. A decrease in microhardness of resin cement specimens was observed with increasing thickness and shade (A1 to A3) of RNBs.