• 제목/요약/키워드: Mold injection

검색결과 1,024건 처리시간 0.028초

Effects of Process Variables on the Gas Penetrated Part in Gas-Assisted Injection Molding

  • Han, Seong-Ryeol;Park, Tae-Won;Jeong, Yeong-Deug
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.8-11
    • /
    • 2006
  • Gas-assisted injection molding (GAIM) process reduces the required injection pressure during mold filling stage as well as the shrinkage and warpage of the part and cycle time. Despite of these advantages, this process needs new parameters and makes the application more difficult because gas and melt interact during the injection molding process. Important GAIM factors involved in this process are gas penetration design, locations of gas injection points, shot size, delay time to inject gas as well as common injection molding parameters. In this study, the experiments are conducted to investigate effects of GAIM process variables on the gas penetration for PP (Polypropylene) and ABS (Acrylonitrile Butadiene Styrene) moldings by changing the gas injection point. Taguchi method is used for the design of the experiments. When the gas is injected at a cavity's center, the most effective factor is the shot size. When the gas is injected at a cavity's end, the most effective factor is the melt temperature. The injection speed is also an effective factor in GAIM process.

화학적 초미세 발포 사출성형을 이용한 에어컨 드레인 펜의 공정 최적화에 대한 연구 (A study on the process optimization of microcellular foaming injection molded air-conditioner drain pen)

  • 김주권;곽재섭;김준민;이준한;김종선
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, we applied microcellular foaming injection molding process to improve the performance of system air-conditioner drain fan which had been produced by injection molding process and studied the optimization of process conditions through 6-sigma process and response surface method (RSM) to reduce weight and deformation of products. Additive type, melt temperature, mold temperature, and injection screw shape were selected as the factor affecting the weight and deformation of the products by carrying out analysis of trivial many through ANOVA and design of experiment (DOE) method. Among the effect factor, we set the addictive type to Long G/F and screw shape to foaming screw which had the highest level of weight reduction and deformation reduction. The amount of foaming agent gas was set at 60 ml, which was the limit beyond which the weight of product did not decrease any more. For melt temperature and mold temperature, we studied the conditions where both weight and deformation were minimized using the RSM. As a result, we set the melt temperature to $250^{\circ}C$, fixed mold temperature to $20^{\circ}C$, and moving mold temperature to $40^{\circ}C$. The improvement effect was analyzed by appling the selected optimal conditions to the production process using the microcellular foaming injection molding. The results showed that the mean weight of product was measured to be 1,420g which was 19% lower than that measured in the current process. The standard deviations of the weights were found to be similar to those in the current process and it showed a low dispersion. The mean deformation was measured to be 0.9237mm, which represented a 57% reduction compared to the mean deformation in the current process, and the standard deviation decreased from 0.3298mm to 0.1398mm. Moreover, we analyzed the process capability for deformation, and the results showed that the short-term process capability increased from 2.73 to 6.60 which was even higher than targeted level of 6.0.

사출성형기 실린더와 금형 캐비티의 실시간 모니터링을 이용한 사출성형공정 비교 분석 (Comparative Analysis of Injection Molding Process by On-line Monitoring in Cylinder of Injection Molding Machine and in Cavity of Mold)

  • 박형필;차백순;태준성;최재혁;이병옥
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1513-1519
    • /
    • 2010
  • 최근 고품질 제품 생산을 위한 방법으로 센서를 이용한 사출공정모니터링 시스템이 적용되고 있다. 그러나 마이크로 금형, 광학용 금형 및 구조가 복잡한 금형에는 센서 설치가 어렵기 때문에, 공정 모니터링 시스템이 적용되기 어려운 단점이 있다. 본 연구에서는 금형과 사출성형기 노즐의 압력 을 측정하여 공정 모니터링 데이터의 정량적 지수를 정의하고, 성형품 중량에 대한 상관분석을 수행하여 노즐에 설치된 압력센서의 공정모니터링 적용성을 알아보았다. 또한 공정모니터링 데이터를 분석하여 다단사출속도, 보압 및 제한 사출 압력의 영향에 따른 사출성형기의 공정 제어 특성도 알아보았다.

전도성 복합재료를 이용한 PEMFC용 separator 사출성형 제조 및 전기전도성 평가 (Fabricaton of PEMFC separators with conducting polymer composites by injection molding process and evaluation of moldability and electrical conductivity of the separators)

  • 윤용훈;임승현;김동학
    • 한국산학기술학회논문지
    • /
    • 제11권4호
    • /
    • pp.1361-1366
    • /
    • 2010
  • 본 논문은 매트릭스 수지로 PPS(Poly(phenylene sulfide))와 PP(Polypropylene)를 사용하였으며, 물리적 및 화학적 특성을 증대시키기 위해 주 첨가제로는 팽창 흑연, 합성 흑연과 보조 첨가제로는 유리 섬유, 카본 섬유, 카본 블랙을 사용하여 총 3가지의 복합소재를 제조하였다. 제조한 복합소재를 이용하여 사출 성형 및 평가 전에 CAE(Computer Aided Engineering)해석 프로그램을 통하여 해석을 하였으며, 사출성형을 통하여 사출조건(사출 압력, 가열시간, 금형온도 등)을 최적화하였다. 일반 사출성형의 경우 온도의 제한과 성형성의 한계가 있어 유동성이 낮은 복합소재의 경우 사출성형이 어렵기 때문에 이를 보완하기 위해 E-MOLD와 사출압축 기능을 함께 사용하여 복합소재의 성형성을 향상 시켰다. 사출 성형 된 각각의 최종 시편을 four point probe 장치를 사용하여 전기전도도를 측정/비교 하였고, 3가지 복합소재 중 PP/SG/CB를 혼합하여 제조한 복합소재가 성형성 및 전기전도도가 우수한 것을 확인하였다.

Core in Core 냉각기술을 적용한 플라스틱 사출성형 특성에 관한 연구 (A Study on the Characteristics of Plastic Injection Molding Using Core in Core Cooling Technology)

  • 최윤서;박인승;양동호;하병철;허만우;이종찬
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.82-87
    • /
    • 2019
  • Recently, plastic materials have become more diversified, and the development of materials with excellent mechanical properties and plasticity has enabled wider application, miniaturization, and refinement of injection molded products. As a result, the utilization of these products in household goods, electronics, automotive parts, and aircraft parts is increasing in almost all industries. Injection molded parts are often used externally on finished commercial products. This means that the injection mold industry is very important to the value of these products. For this reason, the industry is performing research on the precision and efficiency of the injection molding process. In this study, we investigated the applicability of the core in core cooling method to the problem of product deformation due to temperature variation in existing injection mold designs. We also characterized the cooling performance of an injection mold when using this cooling method.

양면 마이크로 패턴 차량용 후육 라이트 가이드의 사출성형 패턴 전사성에 관한 연구 (Study of injection molded pattern transferability of double-sided micro-patterned automotive thick light guides)

  • 이동원;김상윤;김지우;김종수;이성희
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.42-51
    • /
    • 2023
  • In this study, we investigated the injection molding technology of thick-walled light guides, which are parts that control the light source of automotive lamps. Through injection molding analysis, the gate position that can minimize product shrinkage and deformation was selected, and a mold reflecting the analysis results was manufactured to evaluate the effect of injection speed and holding pressure on transferability during micro-pattern molding through experiments. When designing an injection mold for products with varying thicknesses, it was found that installing the gate on the side of the thicker part was advantageous for reducing volume shrinkage and deformation. It was found that the effect of shrinkage due to thickness may be greater than the position of the gate on pattern transferability. The pattern transfer error decreased as the injection speed and holding pressure increased, and it was found that increasing the injection speed was relatively effective.

Transcription Mechanism of Minute Surface Pattern in Injection Molding

  • YASUHARA Toshiyuki;KATO Kazunori;IMAMURA Hiroshi;OHTAKE Naoto
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The Korea-Japan Plastics Processing Joint Seminar
    • /
    • pp.1-6
    • /
    • 2003
  • In injection molding of an optical disk, a toric lens, etc., their performance depends on the transcription preciseness of fine surface structure of a mold. However, transcription behavior has not been made clear yet, because transcription is made in very short time and the structure is very small. In this paper, transcription properties have been examined, by using V-grooves of various sizes. machined on mold surfaces, and the following results are obtained. (1) Transcription properties have been made clear experimentally and it was found that the mold temperature $T_D$ makes great influence on the transcription property and that compression applying time $t_c$ should be taken more than 2.0s for fine transcription. (2) A mechanical model of transcription process, in consideration with strain recovery due to viscoelastic property of polymer. is proposed. (3) Simulation results agree with experimental ones fairly well. It means that the transcription model is useful for estimation of transcription property in advance of an actual. injection molding.

  • PDF

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제2권4호
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF