• Title/Summary/Keyword: Mold core

Search Result 244, Processing Time 0.033 seconds

Ultraprecision Grinding of Glassy Carbon Core for Mold Press Lens (렌즈 성형용 유리탄소 금형의 초정밀연삭)

  • Hwang, Yeon;Cha, Du-Hwan;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.261-265
    • /
    • 2012
  • In this study, glassy carbon was ground for lens core of glass mold press. Ultraprecision grinding process was applied for machining of core surfaces. During the process, brittle crack occurred because of hard-brittleness of glassy carbon. Author investigated optimized grinding conditions from the viewpoint of ductile mode grinding. Geometrical undeformed chip thickness was adopted for critical chip thickness that enables crack free surface. Machined cores are utilized for biaspheric glass lens fabrication and surfaces of lens were compared for verification of ground surface.

Path Control of MR Fluid Jet Polishing System for the Polishing of an Aspherical Lens Mold Core (비구면 렌즈 몰드 코어 연마를 위한 MR Fluid Jet Polishing System의 경로 제어에 관한 연구)

  • Kim, K. B.;Cho, M. W.;Ha, S. J.;Cho, Y. K.;Song, K. H.;Yang, J. K.;Cai, Y.;Lee, J. W.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.431-436
    • /
    • 2015
  • MR fluid can change viscosity in the presence of a magnetic field. A characteristic of MR fluid is reduced scattering during jetting. For these reasons a MR fluid jet polishing system can be used for ultra-precision polishing. In the current paper, the polishing path was calculated considering the aspherical lens profile equation and the experimental conditions for the MR fluid jet polishing system. Then the polishing of an aspherical lens mold core using the MR fluid jet polishing system with the calculated path control was made and the results were compared before and after polishing.

Ultra precision machining of the mold core for free surface prism lens (자유곡면 프리즘 렌즈 사출용 코어 초정밀 형상 가공)

  • Lee, Dong-Kil;Lee, Hak-Suk;Lee, Jong-Jin;Song, Min-Jong;Kim, Sang-Seok;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.452-452
    • /
    • 2008
  • Abstract Head-mounted displays(HMD) are being developed and marketed in growing numbers for a variety of applications. Though most commonly associated with entertainment applications other applications are also being developed. The field vision on the display screens is expanded by the optical system producing an imaginary screen that appears to be positioned several meters in front of the viewer. In this study, the mold core for the prism lens of HMD was processed by fly-cutting method, and the form accuracy of the mold core was measured.

  • PDF

Quantitative Prediction of Gas Evolved by Shell Core in Permanent Mold Casting of Aluminum Alloy (알루미늄합금 중력금형주조용 쉘중자 가스발생량의 정량적 예측)

  • Kim, Ki-Young;Yi, Min-Soo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 1998
  • Shell sand is widely used to make a complex shape castings due to its good collapsibility. When molten metal is poured into the mold, various gases are generated by the thermal decomposition of binder in the shell core. Casting defects such as blow hole and blister come from these gases. If it is possible to predict the evolution of gas quantitatively, it may provide effective solutions for minimizing the casting defects. To examine the gas evolution by shell core quantitatively, casting experiment and calculation were carried out. Gas pressure and gas volume evolved by shell core were measured in the experiment, and temperature distribution in the shell core was obtained by heat transfer analysis. From the result above, prediction on the gas volume evolved during pouring was tried. As forming pressure of the shell core increased and forming temperature decreased, the gas evolution increased. There was a close relationship between the calculated gas volume evolved and the measured one.

  • PDF

Effects of Core Pin Shape on the Filling Imbalances of PA6 Molding (러너 코어핀 형상이 PA6 성형품의 충전불균형도에 미치는 영향)

  • Jeong Y.D.;Kang C.M.;Je D.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.706-709
    • /
    • 2005
  • Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed in multi-cavity injection mold. These filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during the injection molding processing. This paper presents a solution of these filling imbalances by using runner core pin which creates a symmetrical shear distribution within runner and the effects on filling imbalance when modifying a shape of runner core pin. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed. In addition we investigated how filling imbalances were affected by shape of runner core pin.

  • PDF

Compression Molding of Diffractive-Aspheric Lenses Using Chalcogenide Glasses (칼코겐유리를 활용한 회절비구면렌즈 압축성형)

  • Kim, Ji-Kwan;Choi, Young-Soo;Ahn, Jun-Hyung;Son, Byeong-Rea;Hwang, Young-Kug
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.43-48
    • /
    • 2020
  • This study explores the compression molding of diffractive-aspheric lenses using GeSbSe chalcogenide glasses. A mold core with diffractive structure was prepared and a chalcogenide glass lens was molded at various temperatures using the corresponding core. The effect of molding temperature on the transcription characteristics of diffractive structure was examined, by measuring and comparing the diffractive structure between the mold core and the molded chalcogenide glass lens using a microscope and a white light interferometer. In addition, the applicability of the molded lens for thermal imaging was evaluated, by measuring the form error.

A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide (초경합금의 초정밀 연삭특성에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Kim J.T.;Lee B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1737-1740
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide-base $LCU_{CL}$ Core (초정밀 가공기를 이용한 $LSU_{CL}$ 코어 가공에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Lee B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1910-1913
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this paper, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base cores of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

Processing of ta-C Protective Films on Mold for Glass Lens (유리렌즈 성형용 금형의 ta-C 보호 필름 제조에 관한 연구)

  • Oh, Seung-Keun;Kim, Young-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.213-219
    • /
    • 2011
  • Recently aspheric lenses are widely used for superpricision optical instruments, such as cellular phone camera modules, digital cameras and optical communication modules. The aspherical lenses are processed using mold core under high temperature compressive forming pressure. It is imperative to develop superhard protective films for the life extension of lens forming mold core. Especially ta-C films with higher $sp^3$ fractions receive attentions for the life extension of lens forming mold and, in turn, the cost reduction of lenses due to their suprior high temperature stability, high hardness and smooth surfaces. In this study ta-C films were processed on WC mold as a function of substrate bias voltage using FVA (Filtered Vacuum Arc) method. The processed films were characterized by Raman spectroscopy and nano-indentation to investigate bonding nature and hardness, respectively. The film with maximun 87% of $sp^3$ fraction was obtained at the substrate bias voltage of -60 V, which was closest to ta-C film. ta-C films showed better high temperature stability by sustaining relatively high fraction of $sp^3$ bonding even after 2,000 glass lens forming applications.

A Study on the Improvement of the Shape Accuracy of Plastic Lens by Compensation Program (보정 프로그램을 이용한 Plastic 렌즈 Core의 보정에 관한 연구)

  • Woo, Sun-Hee;Lee, Dong-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.112-118
    • /
    • 2008
  • In order to meet the optical performance in the process of the micro lens manufacturing with plastics, it is important to embody accuracy in shape and surface roughness to the intended design. Since it is difficult to machine exactly the mold core of lens fit to the designed shape, in this paper, a simple program using MATLAB is developed for shape correction of the mold core after first machining it. This program evaluates correction parameters(aspheric coefficients and curvature) and generates aspheric NC data for compensating the core surface in prior machining process. The program provides the way to manufacture plastic injection molding lens with aspheric shape of high precision, and is expected to be effective for correction and to shorten the processing time.