• 제목/요약/키워드: Mold Parts

검색결과 636건 처리시간 0.027초

슬립 캐스팅을 이용한 통기성 세라믹형의 쾌속 제작 (Rapid Tooling of Porous Ceramic Mold Using Slip Casting)

  • 정성일;정두수;임용관;정해도;조규갑
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.98-103
    • /
    • 1999
  • The application field of porous mold is more and more expended. A mixture of alumina and cast iron is used for making porous mold using slip and vacuum casting method in this study. Slip casting is a process that slurry is poured into silicon rubber mold, dried in vacuum oven, debinded and sintered in furnace, In this procedure, slurry is composed of powder, binder, dispersion agent, and water. Vacuum casting is a technique for removing air bubbles existed in the slurry under vacuum condition. Since ceramics has a tendency of over-shrinkage after sintering, cast iron is used to compensate dimensional change. The results shows that sintering temperature has a great effect on characteristics of alumina-cast iron composite sintered parts. Finally ceramic-metal composite sintered mold can be used for aluminum alloy casting of shoe mold using this process.

  • PDF

급속 금형가열에 의한 사출성형품의 복굴절특성 개선에 관한 연구 (A Study on Improvement of Birefringence Characteristics of Injection-Molded Plastic Parts by Rapid Mold Heating)

  • 박근;김병훈
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.229-233
    • /
    • 2007
  • The present work focuses on the prediction of birefringence in injection-molded part and its improvement by rapid mold heating. To calculate birefringence, flow-induced residual stress is computed through a fully three-dimensional injection molding analysis. Then the stress-optical law is applied from which the order of birefringence can be evaluated and visualized. The birefringence patterns are predicted for a rectangular plate with a variation of mold temperature, which shows that the amount of molecular orientation and birefringence level decreases with an increase of mold temperature. The effect of mold temperature on the order of birefringence is also studied for a thin-walled rectangular strip, and the relevant results are compared with experimental measurements. Both predicted and experimental patterns of birefringence are in agreements on the observation that the birefringence level diminishes significantly when the mold temperature is raised over the glass transition temperature.

치과용 스케일러 금형의 분말사출성형 CAE 해석설계 (CAE Analysis of Powder Injection Molding Process for Dental Scaler Mold)

  • 고영배;박형필;정성택;이병옥;황철진
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.570-576
    • /
    • 2005
  • Powder Injection Molding(PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry With this regards, design technology of dental scaler tip PIM mold, which has complex shape and small core pin (diameter=0.6mm), with the help of computer-aided analysis of powder injection molding process was developed. Computer-aided analysis for dental scaler tip mold was implemented by finite element method with non-Newtonian fluid, modified Cross model viscosity, PvT data of powder/binder mixture. Compter-aided analysis results, such as filling pattern, weldline formation, air vent position prediction were compared with experimental result, and eventually have been shown good agreement. The core pin (diameter=0.6mm) deflection analysis of dental scaler tip PIM mold during PIM filling process was also investigated before mold fabrication.

Dental Scaler 분말사출용 금형설계 (Powder Injection Mold Design for Dental Scaler)

  • 박형필;고영배;정성택;이병옥;황철진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.270-274
    • /
    • 2005
  • The capability of net shaping for complex 3-D geometry, powder injection molding(PIM) is widely used for parts in the field of automotives, electronics and medical industry. Powder injection mold design for dental scaler tip, a component of medical appliance, was presented. In comparison with conventional machining process, powder injection molding has many advantages, specially in price and dimensional stability, for molding dental scaler tip. Product design and mold design for dental scaler tip was presented. Short shot experiment with scaler tip PIM mold and several defect (flash etc.) during injection molding process was discussed.

  • PDF

탄소공구강의 전단설계 변수에 따른 특성 상관관계 연구 (II) (A Study of Characteristic correlation go after the variable of shear process design for Carbon Tool Steel (II))

  • 류기룡;노현철;송재선;박춘달;윤일채
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.90-95
    • /
    • 2012
  • The sheet metal forming proceccing is very important and indispensable in the automotive industry because the accuracy of prsee worked parts is directly related to the automotive quality. But when making mold it is difficult and expensive to modify mold. mold design technology is a critical technology in press plastic working. When design the mold there are lots of variables in press plastic working according to worked material, mold materials, conditions of heat treatment, clearance and so on. Abrasion of mold depends on these kind of conditions and sheared surface which is crucial for quality of product also depends on them. In this study, we conduct research on abrasion loss of mold according to 8, 10 and 12% of clearance for thickness of 1.0mm of worked material out of mold design variables of the products whose worked materials are high carbon steel and carbon tool steel by a practical experiment and perform a comparative evaluation of difference of abrasion loss mold with the alloy tool steel (STD11) and Tungsten Carbide (WC).

  • PDF

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.

Optimum Design of Process Conditions to Minimize Residual Stress and Birefringence in Injection -Molded Parts

  • Sejin Han;Huh, Yong-Jeong;Kang, Shin-il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권2호
    • /
    • pp.17-25
    • /
    • 2001
  • In this paper, a theoretical study has been made to reduce the residual stress and birefringence in the injection-molded parts. An optimization program has been used to minimize the residual stresses and birefringence calculated from a simulation program. The thermally induced stress has been calculated using a linear viscoelasticity model. The flow stress and birefringence has been calculated using the Leonov's viscoelasticity model. This has been applied to the injection molding of a circular disc and a plate. the optimization has been done either by changing process variables while maintaining the mold temperature constant or by varying the mold-wall temperature with time. This study shows the significant reduction in residual stress and birefringence is possible through the optimization of processing conditions.

  • PDF

금형 가공용 지식기반 CAM 시스템의 개발에 관한연구 (1) -특징 형상 모델링 및 짓기 베이스화에 관하여 - (A Study on the Development of Knowldege-based Computer Aided Manufacturing System for Mold Manufacturing(1) -On the modelling of feature based model and database processing with knowledge-)

  • 정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.622-629
    • /
    • 1999
  • This paper presents the development of an interactive knowledge-based CAM system for design-ing and manufacturing the mold. The system is composed of two functional parts. One is the geo-metric modeller that uses the feature-based models. The models include base plate step, hole, pocket, boss and slot, These are designed by interactive user interface. The other is the expert sys-tem module with inference engine and knowledge database of workpiece material tools manufac-turing machines process an working conditions. With two parts the final mold shape is generated with manufacturing information for effective production.

  • PDF

다공성 임플란트 제조를 위한 3D 프린팅 응용 금형기술 (Mold technology with 3D printing for manufacturing of porous implant)

  • 이성희;김미애;윤언경;이원식
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.30-33
    • /
    • 2017
  • In this study, the mold technology for manufacturing of porous implant was investigated. Firstly, we considered the concept of insert molding technology with 3D printing of porous inert part. The part on implant was designed in the end region of the implant. And then main implant bodies were manufactured using conventional machining method. The other porous parts were designed and optimized with molding simulation. As the feature size of porous implant was so small that perfect feature of it using 3D printing technology could not be obtained. So, we proposed another scheme for manufacturing of the porous implant in the replace of the former approach. Polymer mold cores with 3D printing technology were considered. The effects of addictive manufacturing process parameters on the properties of mechanical and dimensional accuracy were investigated. Direct 3D printed polymer mold cores were designed and manufactured under the simulation of thermal and molding analysis. It was shown that 3D printed mold core with polymer could be adapted to the injection molding for porous implant.

선택적 유도가열을 사용한 사출금형의 국부가열기술 (Local Heating of an Injection Mold using Selective Induction Heating)

  • 도범석;박정민;엄혜주;박근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1119-1123
    • /
    • 2008
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a noncontact procedure. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has difficulty in efficient mold temperature control due to the restriction of an induction coil design suitable for the given mold shape. The present study proposed a localized mold heating method by means of selective use of mold material. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The feasibility of the proposed heating method is investigated through an experimental measurement in terms of the heating efficiency on the localized mold surface.

  • PDF