• Title/Summary/Keyword: Mold Cooling

검색결과 312건 처리시간 0.026초

사출성형시 보압이 냉각시간에 미치는 영향 (Effects of holding pressure affecting cooling time in injection molding)

  • 문영배;최윤식;정영득
    • Design & Manufacturing
    • /
    • 제2권1호
    • /
    • pp.39-43
    • /
    • 2008
  • There occur not only many problems in the injection process but also low quality productivity due to the injection conditions of various injection factors. Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for the holding pressure affecting cooling time. Results of this study would be helpful to setting of holding pressure for optimization of forming condition in order to reduce cooling time in injection molding.

  • PDF

CAP 금형의 사출성형공정에 대한 해석 (Analysis of Injection Molding Process for CAP Mold)

  • 신장순;오상륜;허영무;윤길상;김유진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.23-27
    • /
    • 2005
  • Generally, when the injection molds are made in advanced nations, the improvement of a quality and production rate is obtained by using CAE. In this paper, the methodology which is possible to reduce the cycle time of injection molding process is studies by using the cooling analysis with CAE(Moldmax). In case of changing the cooling system design with the analysis result of CAE, the manimum reduction of the cycle time runs into 30 percent. Finally, the average reduction of the cycle time is 17.8 percent.

  • PDF

CAD와 유한요소해석을 연계한 금형 냉각문제의 설계최적화에 대한 연구 (A Study on CAD/CAE Integration for Design Optimization of Mold Cooling Problem)

  • 오동길;류동화;최주호;김준범;하덕식
    • 한국CDE학회논문집
    • /
    • 제9권2호
    • /
    • pp.93-101
    • /
    • 2004
  • In mechanical design, optimization procedures have mostly been implemented solely by CAE codes combined by optimization routine, in which the model is built, analyzed and optimized. In the complex geometries, however, CAD is indispensable tool for the efficient and accurate modeling. This paper presents a method to carry out optimization, in which CAD and CAE are used for modeling and analysis respectively and integrated in an optimization routine. Application Programming Interface (API) function is exploited to automate CAD modeling, which enables direct access to CAD. The advantage of this method is that the user can create very complex object in Parametric and automated way, which is impossible in CAE codes. Unigraphics and ANSYS are adopted as CAD and CAE tools. In ANSYS, automated analysis is done using codes made by a script language, APDL(ANSYS Parametric Design Language). Optimization is conducted by VisualDOC and IDESIGN respectively. As an illustrative example, a mold design problem is studied, which is to minimize temperature deviation over a diagonal line of the surface of the mold in contact with hot glass.

정밀금형 알루미늄 합금 주물에서의 잔류응력 측정에 관한 연구 (On the Measurement of Residual Stresses in Aluminum Alloy Parts Fabricated by Precision Metal Mold Casting)

  • 김채환;문수동;강신일
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2087-2095
    • /
    • 1999
  • One of the main causes of unwanted dimensional changes in precision metal mold casting parts is excessive and irregular residual stresses induced by temperature gradients and plastic deformation in the solidifying shell. Residual stresses can also cause stress cracking, and lower the fatigue life and fracture strength of the casting parts. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling units was designed and the casting specimens were produced to quantify the effects of different cooling conditions on the development of residual stresses. The layer removal method was used to measure the biaxial residual stresses in casting specimens produced from the experiments. The experimental results agreed with Tien-Richmond's theoretical model for thermal stress development for the solidifying metal plate.

Micro Mold 제작 및 RTP 공정에 의한 미세 패턴의 성형 (Micro Mold Fabrication and the Micro Patterning by RTP Process)

  • 김흥규;고영배;강정진;임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.294-297
    • /
    • 2004
  • RTP(Rapid Thermal Pressing) is to fabricate desired pattern on polymer substrate by pressing patterned mold against the substrate heated around glass transition temperature. For a successful RTP process, the whole process including heating, molding, cooling and demolding should be conducted 'rapidly' as possible. As the RTP process is effective in replicating patterns on flat large surface without causing shape distortion after cooling, it is being widely used for fabricating various micro/bio application components, especially with channel-type microstructures on surface. This investigation finally aims to develop a RTP process machine for mass-producing micro/bio application components. As a first step for that purpose, we intended to examine the technological difficulties for realizing mass production by RTP process. Therefore, in the current paper, 4 kinds of RTP machines were examined and then the RTP process was conducted experimentally for PMMA film by using one of the machines, HEX 03. The micro-patterned molds used for RTP experiment was fabricated from silicon wafer by semi-conduct process. The replicated micro patterns on PMMA films were examined using SEM and the causes of defect observed in the replicated patterns were discussed.

  • PDF

연속주조 몰드의 구조해석 (Structural Analysis of Continuous Casting Mold)

  • 원종진;이종선;홍석주
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.104-110
    • /
    • 2001
  • The objective of this study is structural analysis of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, thermal stress and thermal strain behavior for continuous casting mold. Structural analysis was made using thermal analysis result, utilizing transient analysis of ANSYS. This structural analysis results, many variables such as casting speed, cooling condition film coefficient, convection and load condition are considered.

  • PDF

전산모사 프로그램을 이용한 E-MOLD의 Heating Line 배치의 최적화 설계에 관한 연구 (Development of simulation method for heating line optimization of E-Mold by using commercial CAE softwares)

  • 정재엽;김동학
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1754-1759
    • /
    • 2008
  • 일반사출성형에서는 수지가 캐비티 내를 흐르면서 냉각으로 인한 점도의 상승으로 전사성이 급격히 나빠지기 때문에 미세패턴을 가진 성형품을 제작하는데 많은 어려움이 따른다. 이를 해결하는 방법으로 금형온도를 용융된 수지온도 수준까지 순간적으로 표면만을 가열하여 성형시킨 후 급속히 냉각하는 다양한 순간금형가열방식이 있고, 그 중 본 연구에서는 전열가열방식인 E-Mold을 채택하였다. 특히, 마이크/나노 부품 성형에 필수적인 E-Mold 금형설계에 있어 heating line의 배치는 금형의 온도 제어 및 균일한 온도 분포에 절대적인 영향을 미치므로 최적화된 heating line의 배치가 필수적이다. 본 연구에서는 사출공정의 사이클 타임을 최소화하면서 다양한 해석 프로그램을 사용하여 E-Mold의 최적화 설계를 전산모사 하였고, 이를 실험결과와 비교하였다. 먼저, 3D CAD 프로그램인 Pro-Engineer Wildfire 2.0 을 사용하여 E-Mold 금형을 설계하고, ANSYS사의 ICEMCFD 프로그램을 사용하여 MESH 생성하고, ANSYS사의 FLUENT 프로그램을 사용하여 금형의 초기온도 $60^{\circ}C$에서 $120^{\circ}C$$180^{\circ}C$까지 가열하는데 걸리는 시간과 냉각시키는데 걸리는 시간 등을 전산모사 하였다. 그리고 Polycarbonate를 이용하여 LGP 도광판을 실제 사출성형하여 얻은 데이터와 비교 분석을 하였다. 전산모사와 실제 사출결과에서 $3{\sim}4$초가량의 차이가 나타났지만 실제 사출시 고온의 용융된 플라스틱 수지에 따른 냉각시간의 오차를 생각한다면, 전산모사와 실힘결과는 거의 일치한다고 볼 수 있다. 따라서 본 체계적인 전산모사방법을 통해 E-Mold의 Heating Line 최적화 설계가 가능하다는 것을 확인하였다.

AC4C 합금의 기계적 성질에 미치는 주조조건과 열처리의 영향에 관한 연구 (The Effect of Casting Condition and Heat Treatment on the Mechanical Properties of AC4C Alloy Castings)

  • 강효경;천병욱;최창옥
    • 한국주조공학회지
    • /
    • 제13권5호
    • /
    • pp.450-461
    • /
    • 1993
  • AC4C alloy casts in the metallic mold, zircon sand mold, silica sand mold and shell mold with the pouring temperatures of 680, 710 and $740^{\circ}C$ have been investigated. The tensile strength, elongation and hardness of AC4C alloy castings have been influenced by the kind of molds used. The mechanical properties in zircon sand mold castings were greater than those in other sand mold castings, but were inferior to the properties in metallic mold castings. Eutectic Si particle size and DAS were increased in the order of metallic mold, ziron sand mold, silica sand mold and shell mold. Also, they were increased with the increase of pouring temperatures. DAS, eutectic Si particle size and grain size decreased with the increase of mechanical properties as the cooling rate increased. The eutectic Si particle size and DAS of AC4C alloy castings after T6 treatment were decreased in as-cast. The variation of eutectic Si particle size has been effected on the tensile strength, elongation and fractured surface.

  • PDF