• 제목/요약/키워드: Moisture Distribution Prediction

검색결과 47건 처리시간 0.053초

The Theory for Predicting the Moisture Distribution of Stored Grains

  • Murata, Satoshi;Kawao, Toshio;Nakano, Kohei;Kida, Tamaki
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.932-941
    • /
    • 1993
  • High moisture content of barley seeds, which were carried to the laboratory within 10 minutes after harvest, were stored in air tight bottle at constant temperature, and the individual moisture contents the grains were measured at predecided tim intervals. The theory of predicting the moisture movement between two kinds of different moisture content grains was tried to apply to the prediction of the moisture distribution and tried to apply to the prediction of the moisture distribution and the comparison of the predicted values with the observed dta showed the good suitability of the theory. The shape of the moisture distribution predicted form the theory were similar to the observed ones for the temperature range of 10 to $50^{\circ}C$. This study will be useful in designing the mix-storage facility or dryer.

  • PDF

수치 지형인자를 활용한 토양수분분포 예측 (Prediction of Soil Distribution Using Digital Terrain Indices)

  • 이학수;김경현;한지영;김상현
    • 한국수자원학회논문집
    • /
    • 제34권4호
    • /
    • pp.391-401
    • /
    • 2001
  • 토양수분의 공간적 분포를 예측하기 위하여 지표면 곡률관련인자, 지형흐름인자, 태양에너지 복사인자들을 계산하였다. GPS와 토양수분측정기를 활용한 산지유역에서의 토양수분측정은 토양수분의 공간적 분포자료의 구축을 가능하게 했다. 측정된 토양수분자료와 토양수분 추정인자 사이의 상관관계를 분석하였다. 다중회귀분석을 통한 토양수분 추정인자와 토양수분의 공간적 분포상황에 대한 검토는 수치고도모형(DEM)의 분석을 통한 토양수분 추정능력의 가능성과 한계성을 보여주었다.

  • PDF

고온조건에서 콘크리트 부재의 수분이동 (Moisture Migration of Concrete Members under High Temperature)

  • 이태규;김혜욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1530-1535
    • /
    • 2009
  • Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. The equilibrium properties of moisture are described by means of water vapor sorption isotherms, which illustrate the hysteretical behavior of materials. In this paper, the prediction method of the moisture distribution inside the high strength concrete members under the high temperature is presented. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member. And the moisture diffusivity model of high strength concrete by high temperature is proposed. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test result of other researcher. The proposed algorithm shows a good agreement with the experimental results including the vaporization effect inside the concrete.

  • PDF

화재시 내부증발을 고려한 콘크리트의 수분이동 (Prediction of Moisture Migration of Concrete Including Internal Vaporization in Fire)

  • 이태규
    • 한국화재소방학회논문지
    • /
    • 제23권5호
    • /
    • pp.17-23
    • /
    • 2009
  • 콘크리트가 화재에 노출되면 콘크리트 표면에서의 수분뿐만 아니라 콘크리트 내부에서의 수분도 수분의 평형 및 전달조건에 의하여 증발이 발생된다. 수분의 평형조건은 재료의 자기이력거동으로 표현되는 물의 증발에 대한 수착등온선 관계로 설명된다. 본 논문은 화재시 콘크리트 부재 내부의 수분변화를 예측하고자 하는 것으로 부재 내부의 임의의 위치에서의 상대함수율을 산정하기 위하여 유한요소방식을 적용하였다. 또한 고온에서 콘크리트의 수분확산 특성치에 대해서도 모델식을 제시하였다. 이러한 해석기법의 정확성을 검증하기 위하여 실험데이터와 비교하였으며, 그 결과 수분증발로 인하여 수분이 감소되는 효과를 포함한 전반적인 부재 내부의 수분이동현상이 실제 실험데이터와 거의 유사하게 나타나는 것으로 확인되었다.

Prediction of Temperature and Moisture Distributions in Hardening Concrete By Using a Hydration Model

  • Park, Ki-Bong
    • Architectural research
    • /
    • 제14권4호
    • /
    • pp.153-161
    • /
    • 2012
  • This paper presents an integrated procedure to predict the temperature and moisture distributions in hardening concrete considering the effects of temperature and aging. The degree of hydration is employed as a fundamental parameter to evaluate hydro-thermal-mechanical properties of hardening concrete. The temperature history and temperature distribution in hardening concrete is evaluated by combining cement hydration model with three-dimensional finite element thermal analysis. On the other hand, the influences of both self-desiccation and moisture diffusion on variation of relative humidity are considered. The self-desiccation is evaluated by using a semi-empirical expression with desorption isotherm and degree of hydration. The moisture diffusivity is expressed as a function of degree of hydration and current relative humidity. The proposed procedure is verified with experimental results and can be used to evaluate the early-age crack of hardening concrete.

콘크리트 내부의 수분분포 예측에 관한 연구 (The Prediction of Moisture Distribution in Concrete)

  • 김진근;이칠성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.123-128
    • /
    • 1996
  • Water in concrete has an effect on properties of concrete very much, such as shrinkage, creep, fire resistance, durability, freezing and thawing resistance. Therefore predicting the moisture distribution in concrete is very important. And since the diffusion process of water in concrete is strongly dependent on the temperature and pore humidity, the process is highly nonlinear phenomena. In this study, a finite element program which was capable of simulating the moisture distribution in concrete was developed, and differential drying shrinkage due to the water diffusion process was measured at the different positions of concrete. This F.E.M. program is shown that the analytical results of this study are in good agreement with experimental data. Shrinkage strain caused by moisture distribution was increased with the decrease of pore relative humidity.

  • PDF

Non-destructive quality prediction of domestic, commercial red pepper powder using hyperspectral imaging

  • Sang Seop Kim;Ji-Young Choi;Jeong Ho Lim;Jeong-Seok Cho
    • 한국식품저장유통학회지
    • /
    • 제30권2호
    • /
    • pp.224-234
    • /
    • 2023
  • We analyzed the major quality characteristics of red pepper powders from various regions and predicted these characteristics nondestructively using shortwave infrared hyperspectral imaging (HSI) technology. We conducted partial least squares regression analysis on 70% (n=71) of the acquired hyperspectral data of the red pepper powders to examine the major quality characteristics. Rc2 values of ≥0.8 were obtained for the ASTA color value (0.9263) and capsaicinoid content (0.8310). The developed quality prediction model was validated using the remaining 30% (n=35) of the hyperspectral data; the highest accuracy was achieved for the ASTA color value (Rp2=0.8488), and similar validity levels were achieved for the capsaicinoid and moisture contents. To increase the accuracy of the quality prediction model, we conducted spectrum preprocessing using SNV, MSC, SG-1, and SG-2, and the model's accuracy was verified. The results indicated that the accuracy of the model was most significantly improved by the MSC method, and the prediction accuracy for the ASTA color value was the highest for all the spectrum preprocessing methods. Our findings suggest that the quality characteristics of red pepper powders, even powders that do not conform to specific variables such as particle size and moisture content, can be predicted via HSI.

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

고온조건에서 콘크리트의 수분증발 해석기법 (Analytical Method for Moisture Vaporization of Concrete under High Temperature)

  • 이태규
    • 한국콘텐츠학회논문지
    • /
    • 제17권7호
    • /
    • pp.538-545
    • /
    • 2017
  • 콘크리트가 화재에 노출되면 콘크리트 표면에서의 수분뿐만 아니라 콘크리트 내부에서의 수분도 수분의 평형 및 전달조건에 의하여 증발이 발생된다. 수분의 평형조건은 재료의 자기이력거동으로 표현되는 물의 증발에 대한 수착등온선 관계로 설명된다. 본 논문은 화재시 콘크리트 내부의 수분변화를 예측하고자 하는 것으로 부재 내부의 임의의 위치에서의 상대함수율을 산정하기 위하여 유한요소방식을 적용하였다. 또한 고온에서 콘크리트의 수분확산 특성치에 대해서도 모델식을 제시하였다. 이러한 해석기법의 정확성을 검증하기 위하여 실험데이터와 비교하였으며, 그 결과 수분증발로 인하여 수분이 감소되는 효과를 포함한 전반적인 부재 내부의 수분이동현상이 실제 실험데이터와 거의 유사하게 나타나는 것으로 확인되었다.

Prediction of stiffness degradation in composite laminate with transverse cracking and delamination under hygrothermal conditions-desorption case

  • B. Boukert;M. Khodjet-Kesba;A. Benkhedda;E.A. Adda Bedia
    • Advances in aircraft and spacecraft science
    • /
    • 제11권1호
    • /
    • pp.1-21
    • /
    • 2024
  • The stiffness reduction of cross-ply composite laminates featuring a transverse cracking and delamination within the mid-layer is predicted through utilization of a modified shear-lag model, incorporating a stress perturbation function. Good agreement is obtained by comparing the prediction models and experimental data. The material characteristics of the composite are affected by fluctuations in temperature and transient moisture concentration distribution in desorption case, based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution induces a stiffness reduction. The obtained results demonstrate the stiffness degradation dependence on factors such as cracks density, thickness ratio and environmental conditions. The present study underscores the significance of comprehending the degradation of material properties in the failure progression of laminates, particularly in instances of extensive delamination growth.