• 제목/요약/키워드: Moisture Analysis

검색결과 2,293건 처리시간 0.029초

The Change in Fuel Moisture Contents on the Forest Floor after Rainfall

  • Songhee Han;Heemun Chae
    • Journal of Forest and Environmental Science
    • /
    • 제39권4호
    • /
    • pp.235-245
    • /
    • 2023
  • Forest fuel moisture content is a crucial factor influencing the combustion rate and fuel consumption during forest fires, significantly impacting the occurrence and spread of wildfires. In this study, meteorological data were gathered using a meteorological measuring device (HOBO data logger) installed in the south and north slopes of Kangwon National University Forest, as well as on bare land outside the forest, from November 1, 2021, to October 31, 2022. The objective was to analyze the relationship between meteorological data and fuel moisture content. Fuel moisture content from the ground cover on the south and north slopes was collected. Fallen leaves on the ground were utilized, with a focus on broad-leaved trees (Prunus serrulata, Quercus dentata, Quercus mongolica, and Castanea crenata) and coniferous trees (Pinus densiflora and Pinus koraiensis), categorized by species. Additionally, correlation analysis with fuel moisture content was conducted using temperature (average, maximum, and minimum), humidity (average, minimum), illuminance (average, maximum, and minimum), and wind speed (average, maximum, and minimum) data collected by meteorological measuring devices in the study area. The results indicated a significant correlation between meteorological factors such as temperature, humidity, illuminance, and wind speed, and the moisture content of fuels. Notably, exceptions were observed for the moisture content of the on the north slope and that of the ground cover of Prunus serrulata and Castanea crenata.

무인항공 초분광 영상을 기반으로 한 고도에 따른 퇴적물 함수율 탐지 고찰 (Discussion on Detection of Sediment Moisture Content at Different Altitudes Employing UAV Hyperspectral Images)

  • 이경은;유재형;박찬혁
    • 자원환경지질
    • /
    • 제57권4호
    • /
    • pp.353-362
    • /
    • 2024
  • 본 연구는 무인항공기 기반 초분광 센서를 활용하여 퇴적물의 함수율에 따른 분광학적 반응 특성을 고찰하고, 비행 고도에 따른 함수율 탐지 효율성을 평가하였다. 이를 위해 다양한 함수율을 가진 퇴적물 시료를 대상으로 40m와 80m 고도에서 400~1000nm 파장 대역의 초분광 영상을 획득하고 분석하였다. 퇴적물의 반사도는 함수율이 증가함에 따라 전반적으로 감소하는 경향을 보였다. 함수율과 반사도 사이의 상관관계 분석 결과, 400~900nm 전 영역에서 강한 음의 상관관계(r < -0.8)를 보였다. 랜덤포레스트 기법을 활용한 함수율 탐지모델 구축 결과, 40m와 80m 고도에서의 탐지 정확도는 각각 RMSE 2.6%, R2 0.92와 RMSE 2.2%, R2 0.95로 나타나 고도 간 정확도 차이가 미미함을 확인하였다. 변수 중요도 분석 결과, 600~700nm 대역이 함수율 탐지에 주요한 역할을 하는 것으로 나타났다. 본 연구는 향후 환경 모니터링 분야에서 효율적인 퇴적물의 수분 관리와 자연재해 예측에 활용될 수 있을 것으로 기대된다.

Single-Kernel Corn Analysis by Hyperspectral Imaging

  • Cogdill, R.P.;Hurburgh Jr., C.R.;Jensen, T.C.;Jones, R.W.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1521-1521
    • /
    • 2001
  • The objective of the research being presented was to construct and calibrate a spectrometer for the analysis of single kernels of corn. In light of the difficulties associated with capturing the spatial variability in composition of corn kernels by single-beam spectrometry, a hyperspectral imaging spectrometer was constructed with the intention that it would be used to analyze single kernels of corn for the prediction of moisture and oil content. The spectrometer operated in the range of 750- 1090 nanometers. After evaluating four methods of standardizing the output from the spectrometer, calibrations were made to predict whole-kernel moisture and oil content from the hyperspectral image data. A genetic algorithm was employed to reduce the number of wavelengths imaged and to optimize the calibrations. The final standard errors of prediction during cross-validation (SEPCV) were 1.22% and 1.25% for moisture and oil content, respectively. It was determined, by analysis of variance, that the accuracy and precision of single-kernel corn analysis by hyperspectral imaging is superior to the single kernel reference chemistry method (as tested).

  • PDF

유동상 소각로에서 하수 슬러지 연료 특성 (Fuel Characteristics of Sewage Sludge in a Fluidized Bed Incinerator)

  • 최진환;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.81-91
    • /
    • 1999
  • Fuel characteristics of sewage sludge as required for the fluidized bed incinerators have been evaluated. Sewage sludge is basically a solid fuel with high percentage of moisture. Moisture content of the fuel directly affects the heating value of the fuel and the exhaust gas composition. When the sludge of transported into the incinerator, sludge cake is subject to the mixing, break-up and heat-up. Fluidization process would enhance these physical processes. The sludge fuel could then undergo the moisture evaporation and devolatilization process. Subsequent oxidation of volatiles as well as the remaining char would then follow. Sludge samples are characterized with high percentage of volatiles out of total combustibles. Quantitative understanding of above listed subprocesses would certainly help in the utilization of fluidized bed incinerators. A limited set of fuel characterization tests including calorimetric analysis, proximate analysis, elemental analysis and thermogravimetric analysis were conducted for the selected sludge samples. The measurement reasults of sludge samples were reported along with some published data. Limited experience in the actual incinerator plant is also presented.

  • PDF

In-situ monitoring and reliability analysis of an embankment slope with soil variability

  • Bai, Tao;Yang, Han;Chen, Xiaobing;Zhang, Shoucheng;Jin, Yuanshang
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.261-273
    • /
    • 2020
  • This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability of an embankment slope with spatially varying soil properties in real time. The soils' mechanical properties varied with the soil layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is high.

Analysis on Monopole Antenna for Moisture Determination in Oil Palm Fruit Using Finite Difference Method

  • Cheng, E.M.;Abbas, Z.;Rahim @ Samsuddin, H.A.;Lee, K.Y.;You, K.Y.;Hassan, J.;Zainuddin, H.;Khor, S.F.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1754-1762
    • /
    • 2016
  • Finite difference analysis were applied to study the principle operation of monopole antenna for moisture determination in oil palm fruit at 2 GHz. The electromagnetic field interact with oil palm fruit on the interface between the antenna and oil palm fruit and cause a reflection. The reflection measurement is based on mismatch impedance or dielectric properties between two media. Reflection coefficient is used to quantify the level of reflection. The monopole antenna was made of RG405/U semi-rigid coaxial cable with an inner and outer diameter of 0.45 mm and 1.50 mm, respectively with 2.23 mm length of protruding conductor over 5.66 cm length of monopole antenna. This monopole antenna for moisture detection was compared with induced EMF method in terms of reflection coefficient at 2 GHz. The results show that the complex reflection coefficient measured using monopole antenna provides significant results to predict moisture content in oil palm fruit.

Measurement of ecological niche of Quercus aliena and Q. serrata under environmental factors treatments and its meaning to ecological distribution

  • Lee, Seung-Hyuk;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제35권3호
    • /
    • pp.227-234
    • /
    • 2012
  • Quercus aliena and Q. serrata are both occur as natural vegetation alongside natural freshwater bodies of the southern Korea Peninsula. Q. serrata dominates over Q. aliena as secondary forest vegetation in the present day. In order to explain these natural distributional traits of the oak species, we conducted some experiments with oak seedlings which treated with major important environmental resources, including light, moisture and nutrients, under controlled conditions. We then measured the ecological niche breadths and overlap from 15 eco-morphological characteristics. The ecological niche breadth of Q. aliena and Q. serrata were higher in terms of the nutrient factor applied, but was lower terms of light. The niche breadth of Q. serrata was wider than that of Q. aliena in light and moisture exposure. On the other hand, the niche breadth of Q. aliena was similar with that of Q. serrata in terms of the nutrient factor applied. These results imply that Q. serrata has a broader ecological distribution in over a wider variety of light and moisture environments than that of Q. alien. Ecological niche overlap between two oak species was the widest in terms of the light treatment factor applied, and narrowest in terms of moisture. This response pattern was also verified by cluster and principle component analysis. These results suggest competitive interactions between Q. serrata and Q. aliena seedlings may be higher for light resources than moisture or nutrient resources, and that Q. serrata is more shade tolerant than Q. aliena.

Hygrothermoelasticity in a porous cylinder under nonlinear coupling between heat and moisture

  • Ishihara, Masayuki;Yoshida, Taku;Ootao, Yoshihiro;Kameo, Yoshitaka
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to develop practical tools for the mechanical design of cylindrical porous media subjected to a broad gap in a hygrothermal environment. The planar axisymmetrical and transient hygrothermoelastic field in a porous hollow cylinder that is exposed to a broad gap of temperature and dissolved moisture content and is free from mechanical constraint on all surfaces is investigated considering the nonlinear coupling between heat and binary moisture and the diffusive properties of both phases of moisture. The system of hygrothermal governing equations is derived for the cylindrical case and solved to illustrate the distributions of hygrothermal-field quantities and the effect of diffusive properties on the distributions. The distribution of the resulting stress is theoretically analyzed based on the fundamental equations for hygrothermoelasticity. The safety hazard because of the analysis disregarding the nonlinear coupling underestimating the stress is illustrated. By comparing the cylinder with an infinitesimal curvature with the straight strip, the significance to consider the existence of curvature, even if it is infinitesimally small, is demonstrated qualitatively and quantitatively. Moreover, by investigating the bending moment, the necessities to consider an actual finite curvature and to perform the transient analysis are illustrated.

산악 지형에서의 토양수분 관측소 구축을 위한 연구(1): Cosmic-ray 검증시스템 구축을 위한 토양수분량 대표성 분석 연구 (A Study for establishment of soil moisture station in mountain terrain (1): the representative analysis of soil moisture for construction of Cosmic-ray verification system)

  • 김기영;정성원;이연길
    • 한국수자원학회논문집
    • /
    • 제52권1호
    • /
    • pp.51-60
    • /
    • 2019
  • 본 연구에서는 Cosmic-ray 토양수분량 관측시스템 구축 시 필요한 검증 네트워크 설계 기법 개발에 목적을 두고 유전율식(dielectric constant) 장비인 Frequency Domain Reflectometry (FDR)와 연계하여 Cosmic-ray 검증시스템을 구축 운영하였다. Cosmic-ray 검증시스템 평가에 필요한 시범지역은 기존 계측 장비와의 연계성과 다양한 수문자료의 활용성을 고려하여 설마천 유역에 구축하였다. 시범지역은 Cosmic-ray 장비와 FDR 센서(10개소)로 구축하였으며 2018년 7월부터 현재까지 운영되고 있다. 본 연구에서는 검증시스템의 신뢰도를 높이기 위해 코어법(soil core sampling method)을 통해 산출한 용적수분함량(volumetric water content)을 유전율식 장비와 정기적으로 검증하였다. 연구기간 중 수행한 코어법과 FDR 센서를 검증한 결과, 두 자료의 통계량이 $bias=-0.03m^3/m^3$$RMSE=0.03m^3/m^3$의 유의한 값을 보였다. 또한 연구기간 동안 FDR 센서의 시계열 특성은 모든 강우에 정상적으로 반응하였다. 그러나 일부 지점에서는 낙엽 및 캐노피의 차단과 상부사면의 유출 등으로 인해 상이한 특성을 보였다. Cosmic-ray 영향원(influence line) 내 FDR 센서의 대표성 분석은 시간 안정성 해석법(temporal stability analysis, TSA)을 이용하여 토심별(10 cm, 20 cm, 30 cm, 40 cm)로 분석하였다. 10개소에 대한 토심별 토양수분량의 대표성을 TSA로 분석한 결과, 토심 10 cm에서는 FDR 5, 토심 20 cm에서는 FDR 8, 토심 30 cm에서는 FDR 2, 토심 40 cm에서는 FDR 1에서 가장 우수한 대표 특성을 보였다. 본 연구의 시범지역 운영 기간이 짧다는 한계는 있지만 지금까지의 분석 결과를 토대로 하여 볼 때, Cosmic-ray 관측시스템 구축 시에는 검증 장비로는 유전율식을 활용하고, Cosmic-ray 영향원 내 토양수분량의 대표성 분석은 TSA 방법으로 수행하는 것이 바람직할 것으로 판단된다.

토양수분지수를 이용한 유역단위 가뭄 평가 (Watershed Scale Drought Assessment using Soil Moisture Index)

  • 김옥경;최진용;장민원;유승환;남원호;이주헌;노재경
    • 한국농공학회논문집
    • /
    • 제48권6호
    • /
    • pp.3-13
    • /
    • 2006
  • Although the drought impacts are comparably not catastrophic, the results from the drought are fatal in various social and economical aspects. Different from other natural hazards including floods, drought advances slowly and spreads widely, so that the preparedness is quite important and effective to mitigate the impacts from drought. Soil moisture depletion directly resulted from rainfall shortage is highly related with drought, especially for crops and vegetations, therefore a drought can be evaluated using soil moisture conditions. In this study, SMI (Soil Moisture Index) was developed to measure a drought condition using soil moisture model and frequency analysis for return periods. Runs theory was applied to quantify the soil moisture depletions for the drought condition in terms of severity, magnitude and duration. In 1994, 1995, 2000, and 2001, Korea had experienced several severe droughts, so the SMI developed was applied to evaluate applicability in the mid-range hydrologic unit watershed scale. From the results, SMI demonstrated the drought conditions with a quite sensitive manner and can be used as an indicator to measure a drought condition.