• Title/Summary/Keyword: Modulus reduction ratio

Search Result 72, Processing Time 0.031 seconds

Characterization of Weathered Zone bearing Corestones through Scale Model Test (실내모형실험에 의한 핵석 풍화대 지반 특성 산정)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.435-443
    • /
    • 2007
  • This study shows the prediction of the engineering properties of weathered zone bearing corestones through the engineering geological surveys and the scale model test in the laboratory. The window survey and the observation on the borehole core were peformed on three natural slopes in corestones area in order to analyse the distribution pattern and the geometrical properties of corestones. Natural corestones were crushed and abrased for the scale model test into less than 5 mm in maximum-2mm in average by the scale reduction ratio based on the size of natural corestones and the specimen size. Scale model tests were carried out on soil and plaster model specimens with different corestone content ratio - 0%, 10%, 20%. The direct shear test on soils shows that shear strength is increased by the increase of corestone content ratio. The increase of cohesion is, however, more important factor to the shear strength of soil for 20% corestone content ratio due to interlocking of crushed corestone particles. The plaster model test shows a tendance of increase of UCS and modulus of elasticity with increase of corestone content. The variation ratio of specimen property by change of corestone content ratio in plaster model test was applied to in situ properties in order to estimate the properties of weathered zone bearing corestones. So it could be predicted that the increase of corestone content to 10% and to 20% produce about 18% and 30% UCS's increase respectively.

Analytical Study on Vibrational Properties of High Damping Polymer Concrete (고 감쇠 폴리머 콘크리트의 진동 특성에 관한 해석적 연구)

  • Kim, Jeong-Jin;Kim, Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.119-125
    • /
    • 2020
  • Research on high-attenuation concrete for the vibration reduction performance by mixing epoxy-based synthetic resins and aggregates is actively being conducted. The curing time of high-attenuation concrete is very short because water is not used, and the physical and dynamic properties are very excellent. therefore, it is expected to be widely used in building structures requiring reduction of interior-floor noise and vibration. Furthermore, A way to expand the applicability of the high-damping concrete mixed with polymer in the field of reinforcement material have been variously studied. In order to replace polymer concrete with ordirnary concrete and existing anti-vibration reinforcement material, it is necessary to review overall vibration reduction performance considering physical properties, dynamic properties, productivity and field applicability. In this study, the physical and dynamic properties of polymer concrete by epoxy mixing ratio compared with ordirnary concrete. As a result, the elastic modulus was similar. On the other hand, polymer concrete for the compressive, tensile, and flexural strengths was quite more excellent. In particular, the measured tensile strength of polymer concrete was 4-10 times higher than that of ordirnary concrete. it was a big difference, and the frequency response function and damping ratio was studied through modal test and finite element analysis model. The dynamic stiffness of polymer concrete was 20% greater than that of ordirnary concrete, and the damping ratio of polymer concrete was approximately 3 times more than that of ordirnary concrete.

A Study on the Flexural Behavior of Concrete Using Non-burnt Cement (비소성 시멘트 콘크리트의 휨 거동에 관한 연구)

  • Yoo, S.W.;Nam, E.Y.;Lee, S.J.;Hwang, S.B.;Soh, Y.S.;Kim, J.S.
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.49-56
    • /
    • 2012
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag, phosphogypsum, and waste lime instead of clinker, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by CO2 discharge, and reduction of the production cost. By this reason, in this study, mechanical behavior tests of non-burnt cement concrete were performed, and elasticity modulus and stress-strain relationship of non-burnt cement concrete were proposed. 6 test members were manufactured and tested according to reinforcement ratio and concrete compressive strength. By the test results, there was no difference between ordinary concrete and non-burnt cement concrete of flexural behavior. In order to verify the proposed non-burnt cement concrete model, nonlinear analytical model was derived by using strain compatibility method. By the results of comparison between test results, ordinary concrete model and proposed model, The proposed model well predicted the flexural behavior of non-burnt cement concrete.

An Experimental Study on the Mechanical Behavior of Concrete Using Non-Sintered Cement (비소성 시멘트 콘크리트의 역학적 거동에 대한 실험 연구)

  • Yoo, Sung-Won;Min, Gyeong-Oan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.115-121
    • /
    • 2012
  • If cement could be manufactured with industrial byproducts such as granulated blast furnace slag, phosphogypsum, and waste lime rather than clinker, there would be many advantages, including the maximization of the use of these industrial byproducts for high value-added resources, the conservation of natural resources and energy by omitting the use of clinker, the minimization of environmental pollution problems caused by $CO_2$ discharge, and the reduction of the production cost. For this reason, in this study, mechanical behavior tests of non-sintered cement concrete were performed, and elasticity modulus and stress-strain relationship of non-sintered cement concrete were proposed. Nine test members were manufactured and tested according to reinforcement ratio and concrete compressive strength. According to the test results, there was no difference between general cement concrete and non-sintered cement concrete in terms of flexure and shear behavior.

Effects of Temperature and Water Pressure on the Material Properties of Granite & Limestone from Gagok Mine (온도와 수압이 가곡광산 화강암과 석회암의 물성에 미치는 영향)

  • Yoon, Yong-Kyun;Baek, Young-Jun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • This study focuses on having a temperature and water pressure effects on the change of material properties of rocks. Granite and limestone specimens from Gagok Mine were thermally treated with predetermined temperatures of 200, 300, 400, 500, 600 and $700^{\circ}C$ (excepting $700^{\circ}C$ for limestone) to estimate the reduction of material properties of rocks caused by heat. Specific gravity, effective porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus and Poisson's ratio for pre-heated specimens were measured. With increasing temperature, material properties of both rock specimens change sequentially. Significant changes of specific gravity, effective porosity and elastic wave porosity occur above $400^{\circ}C$ for granite and $300^{\circ}C$ for limestone. Changes of uniaxial compressive strength, Young's modulus and Poisson's ratio seem to be similar to those of physical properties. GSI of 500, 600 and $700^{\circ}C$ specimens inferred by using uniaxial compressive strength and Young's modulus of preheated granite specimens is found to be 81, 66 and 58 each. In case of pre-heated limestone specimens of 400, 500 and $600^{\circ}C$, the corresponding GSI is 76, 71 and 65 each. 500, 600 and $700^{\circ}C$ granite specimens and 400, 500 and $600^{\circ}C$ limestone specimens were pressurized to 7.5 MPa and their effective porosity, elastic wave velocity, uniaxial compressive strength and Young's modulus were measured. The average value of material properties (mentioned above) of 500, 600 and $700^{\circ}C$ granite specimens under water pressure compared with material properties of non-pressurized pre-heated specimens exhibits the reduction of 7.6, 11.3 and 14.9%, respectively. In case of 400, 500 and $600^{\circ}C$ limestone specimens under water pressure, the average value of material properties decreases by 8.2, 13.8 and 21.9%, respectively.

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

Study on the Properties of Flexible Polyurethane Foam at the Aging Condition (연질 폴리우레탄 폼의 노화 특성 연구)

  • Kim, Chang-Bum;Kim, Sangbum
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.123-127
    • /
    • 2012
  • In order to establish the cause of the deformation of polyurethane foam, compression set was measured according to the aging temperature and time. FT-IR, TGA, DSC and DMA were used for investigating the cause of deformation of aged PUF. The results of FT-IR and TGA reveals that no structure change occurred during deformation of PUF. Resilience of aged PUF was reduced by the increase of reduction ratio in storage modulus over the glass transition temperature of hard segment.

A Study on the Strength and Fracture Toughness of High Strength Hardened Cement Paste (고강도 시멘트 경화체의 강도 및 파괴인성에 관한 연구)

  • 김정환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.151-158
    • /
    • 1994
  • In this work, in order to inrprove the flexural strength of hardened portlarid cerncrit paste, mix ing water was reduced to water ccrnent ratio of 0.1 aid water soluble polymer such as hydroxy propyl methyl cellulose was adclelri to the paste to obtain a better dispersion. The paste was kneaded by the twin roll mill for cornpact and homogeneous mixing. The high strength mechanism of the hardened cement paste may be due to the removal of macropores larger than 100${\mu}m$, the reduction of capillary pores acting as the passage of crack propagation, the increase of Young's moculus with iticrease of unhytlratcci cenxxnt ard the incicasc of fracture toughnevs with the crack toughening mechanism (grain bridging, polymer fibril bridging and fritional inter-locking).