• Title/Summary/Keyword: Modulus of toughness

Search Result 193, Processing Time 0.02 seconds

Study on the Effects of Single Fiber Tensile Properties on Bundle Tensile Properties through Estimation of HVI Bundle Modulus and Toughness

  • Koo, Hyun-Jin;Jeong, Sung Hoon;Suh, Moon W.
    • Fibers and Polymers
    • /
    • 제2권1호
    • /
    • pp.144-147
    • /
    • 2001
  • The HVI properites and Mantis single fiber tensile properties were analyzed to evaluate the relationship between fiber and bundle tensile properties. For this study, a new method has been developed for estimating the modulus and toughness of cotton fiber bundles directly from the HVI tenacity-elongation curves. The single fiber tensile properties were shown to be translated well into the bundle tensile properties. The single fiber breaking elongation was found to be the most significant contributing factor to bundle tensile properties. The bundle breaking elongation and toughness were shown to increase as the single fiber breaking elongation increased. The bundle modulus increased as the single fiber breaking elongation and/or standard deviation of single fiber breaking elongation decreased.

  • PDF

Fracture toughness of amorphus SiC thin films using nanoindentation and simulation

  • Mamun, M.A.;Elmustafa, A.A.
    • Advances in materials Research
    • /
    • 제9권1호
    • /
    • pp.49-62
    • /
    • 2020
  • Fracture toughness of SiC on Si thin films of thicknesses of 150, 750, and 1500 nm were measured using Agilent XP nanoindenter equipped with a Dynamic Control Module (DCM) in Load Control (LC) and Continuous Stiffness Method (CSM) protocols. The fracture toughness of the Si substrate is also measured. Nanovision images implied that indentations into the films and well deep into the Si caused cracks to initiate at the Si substrate and propagate upward to the films. The composite fracture toughness of the SiC/Si was measured and the fracture toughness of the SiC films was determined based on models that estimate film properties from substrate properties. The composite hardness and modulus of the SiC films were measured as well. For the DCM, the hardness decreases from an average of 35 GPa to an average of 13 GPa as the film thick increases from 150 nm to 1500 nm. The hardness and moduli of the films depict the hardness and modulus of Si at deep indents of 12 and 200 GPa respectively, which correlate well with literature hardness and modulus values of Si. The fracture toughness values of the films were reported as 3.2 MPa√m.

음향 방출법에 의한 파괴 인성치 측정 및 파괴 안정성 평가를 위한 연구 (Study of Fracture Toughness Measurement and Fracture Stability Evaluation by Acoustic Emission Method)

  • 이강용;백충헌
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.96-104
    • /
    • 1989
  • 본 연구에서는 AE법에 의해 J$_{IC}$를 결정하는 것은 Takahashi등의 방법을 따르되 AE 실험결과를 토대로 이론을 전개하여 재료의 물성 곡선인 J-R곡선의 실험식과 재료 찢어짐 계수를 계산할 수 있는 실험식을 유도하며, 이렇게 구한 실험식을 불안정 파괴 조건에 적용하여 그 타당성을 검토한다.다.

Strength and toughness prediction of slurry infiltrated fibrous concrete using multilinear regression

  • Shelorkar, Ajay P.;Jadhao, Pradip D.
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.123-132
    • /
    • 2022
  • This paper aims to adapt Multilinear regression (MLR) to predict the strength and toughness of SIFCON containing various pozzolanic materials. Slurry Infiltrated Fibrous Concrete (SIFCON) is one of the most common terms used in concrete manufacturing, known for its benefits such as high ductility, toughness and high ultimate strength. Assessment of compressive strength (CS.), flexural strength (F.S.), splitting tensile strength (STS), dynamic elasticity modulus (DME) and impact energy (I.E.) using the experimental approach is too costly. It is time-consuming, and a slight error can lead to a repeat of the test and, to solve this, alternative methods are used to predict the strength and toughness properties of SIFCON. In the present study, the experimentally investigated SIFCON data about various mix proportions are used to predict the strength and toughness properties using regression analysis-multilinear regression (MLR) models. The input parameters used in regression models are cement, fibre, fly ash, Metakaolin, fine aggregate, blast furnace slag, bottom ash, water-cement ratio, and the strength and toughness properties of SIFCON at 28 days is the output parameter. The models are developed and validated using data obtained from the experimental investigation. The investigations were done on 36 SIFCON mixes, and specimens were cast and tested after 28 days of curing. The MLR model yields correlation between predicted and actual values of the compressive strength (C.S.), flexural strength, splitting tensile strength, dynamic modulus of elasticity and impact energy. R-squared values for the relationship between observed and predicted compressive strength are 0.9548, flexural strength 0.9058, split tensile strength 0.9047, dynamic modulus of elasticity 0.8611 for impact energy 0.8366. This examination shows that the MLR model can predict the strength and toughness properties of SIFCON.

YBCO-Ag 초전도체의 기계적 성질 및 열충격 내성에 대한 평가 (Evaluation of Mechanical Properties and Resistance to Thermal Shock of YBCO-Ag Superconductors)

  • 주진호
    • 한국분말재료학회지
    • /
    • 제5권2호
    • /
    • pp.139-144
    • /
    • 1998
  • We have evaluated the role of Ag additions on the strength, fracture toughness, elastic modulus and resistance to thermal shock of $YBa_2Cu_3O_{7-x}$(YBCO) superconductor. Addition of 10 vol.% Ag improved strength and fracture toughness, whereas, decreased elastic modulus of YBCO. In addition, YBCO-Ag composites improved resistance to thermal shock probably due to enhanced strength, fracture toughness and thermal conductivity as a result of Ag addition. It is to be noted that YBCO-Ag made by mixing with $AgNO_3$ solution showed slightly higher strength, fracture toughness and resistance to thermal shock, compared to that made by mixing with metallic Ag powder. These improvements are believed to be due to the microstructure of more finely and uniformly distributed Ag particles.

  • PDF

계면파괴인성과 콘크리트 역학적 성질의 상관관계 (Corelationship between Interfacial Fracture Toughness and Mechanical Properties of Concrete)

  • 이광명;안기석;이회근;김태근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.359-364
    • /
    • 1998
  • The interfacial zone in concrete materials is extensive, geometrically complex, and constitutes inherently weak zones that limit the concrete performance. Motar-aggregate interfaces play a major role in the fracture processing in concrete composites. Also, the interfacial bond considerably influence mechanical properties of concrete such as modulus of elasticity, strength, and fracture energy, Characterization of the interfacial properties is, therefore, essential to overcome the limitations associated with the interfaces. an objective of this paper is to investigate the corelationship between the fracture toughness of mortar-aggregate interface and the concrete properties such as strengths and elastic moduli. It is observed from the test results that interface fracture toughness is closely related with the compressive strength rather than other properties. At early ages, the development of both tensile strength and elastic modulus are much greater thatn that of both interface fracture toughness and compressive strength.

  • PDF

식품분쇄용 세라믹 롤 재료 개발과 기계적 특성평가 (Development of Ceramic Roll Materials for Food Grinding Processing and Evaluation of Mechanical Behavior)

  • 강위수
    • Journal of Biosystems Engineering
    • /
    • 제26권1호
    • /
    • pp.47-56
    • /
    • 2001
  • In order to prevent the possibility of mixing of metal powder during food grinding processing with the metal roll mill this study was conducted to develope the materials of ceramics roll as a substitute of gray cast iron mill. Since the ceramics is brittle material and can be broken easily by a crack, it was needed to develope engineering ceramics roll materials with high elastic modulus and fracture toughness. Adding 0∼50 wt% Al$_2$O$_3$as densification additives to porcelain body material and forming the ceramics an different condition, mechanical properties were evaluated. The material structure’s densification process was analyzed by SEM and XRD. The evaluation of the mechanical properties of ceramics roll materials were compared and analyzed by non-destructive test using Young’s modulus and destructive test using 3-point bending strength and fracture toughness. The results showed several correlative results. Porcelain body material with 40 wt% Al$_2$O$_3$content heated at 1,200$\^{C}$ for 5h was high bulk density of 2.77, Young’s modulus of 118.4Gpa, 3-point bending strength of 137 MPa and fracture toughness of 2.88 MPa$.$m$\^$$\sfrac{1}{2}$/ . After analyzing the relationship between non-destructive test and destructive test, the coefficient of determination was more than 0.9. Therefore, the evaluation of non-destructive test by ultrasonic was turned out to be feasible in evaluating the mechanical properties of ceramics.

  • PDF

Electrical Resistivity and Fracture Toughness of SiC-ZrB2

  • Shin, Yong-Deok;Ju, Jin-Young;Kwon, Ju-Sung
    • The Korean Journal of Ceramics
    • /
    • 제5권4호
    • /
    • pp.400-403
    • /
    • 1999
  • The mechanical and electrical properties of hot-pressed and annelaed $\beta$-SiC+39vol.% $ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$(6:4 wt%). In this microstructures, no reactions and elongated $\alpha$-SiC grains with equiaxed $ZrB_2$ grains were observed between $\beta$-SiC and $ZrB_2$. The properties of the $\beta$-SiC+39vol.%$ZrB_2$ composites with 4wt% $Al_2O_3+Y_2O_3$ at R.T. are as follows: fracture toughness is 6.37 MPa.m1/2, electical resistivity is $1.51\times10^{-4}\Omega \cdot\textrm{cm}$ and the relative density is 98.6% of the theoretical density. The fracture toughness of the $\beta$-SiC+39 vol.% $ZrB_2$ composites were weakly decreased with increasing amount of $Al_2O_3+Y_2O_3$ additives. Internal stresses due to the difference of $\beta$-SiC and $ZrB_2$ thermal expansion coefficient and elastic modulus mismatch appeared to contribute to fracture toughening in $\beta$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites.

  • PDF

LNG 저장탱크용 멤브레인재(STS 304강)의 강도 및 파괴인성에 미치는 저온효과 (Low Temperature Effects on the Strength and Fracture Toughness of Membrane for LNG Storage Tank)

  • 김정규;김철수;조동혁;김도식;윤인수
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.710-717
    • /
    • 2000
  • Tensile and fracture toughness tests of the cold-rolled STS 304 steel plate for membrane material of LNG storage tank were performed at wide range of temperatures, 11 IK(boiling point of LNG), 153K , 193K and 293K(room temperature). Tensile strength significantly increases with a decrease in temperature, but the yield strength is relatively insensitive to temperature. Elongation at 193K abruptly decreases by 50% of that at 293K, and then decreases slightly in the temperature range of 193K to 111K. Strain hardening exponents at low temperatures are about four times as high as that at 293K. Elastic-plastic fracture toughness($J_c$) and tearing modulus($T_{mat}$) tend to decrease with a decrease in temperature. The $J_c$ values are inversely related to effective yield strength in the temperature range of 111K to 293K. These phenomena result from a significant increase in the amount of transformed martensite in low temperature regions.

Mechanical behaviors of concrete combined with steel and synthetic macro-fibers

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.207-220
    • /
    • 2007
  • In this paper, hybrid fibers including high elastic modulus steel fiber and low elastic modulus synthetic macro-fiber (HPP) as two elements were used as reinforcement materials in concrete. The flexural toughness, flexural impact and fracture performance of the composites were investigated systematically. Flexural impact strength was analyzed with statistic analyses method; based on ASTM and JSCE method, an improved flexural toughness evaluating method suitable for concrete with synthetic macro-fiber was proposed herein. The experimental results showed that when the total fiber volume fractions ($V_f^a$) were kept as a constant ($V_f^a=1.5%$), compared with single type of steel or HPP fibers, hybrid fibers can significantly improve the toughness, flexural impact life and fracture properties of concrete. Relative residual strength RSI', impact ductile index ${\lambda}$ and fracture energy $G_F$ of concrete combined with hybrid fibers were respectively 66-80%, 5-12 and 121-137 N/m, which indicated that the synergistic effects (or combined effects) between steel fiber and synthetic macro-fiber were good.