• 제목/요약/키워드: Modulus of Elasticity Reduction Factor

검색결과 7건 처리시간 0.022초

Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network

  • Nguyen, Thuc Nhu;Yu, Yang;Li, Jianchun;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.541-553
    • /
    • 2019
  • Alkali-silica reaction (ASR) in concrete can induce degradation in its mechanical properties, leading to compromised serviceability and even loss in load capacity of concrete structures. Compared to other properties, ASR often affects the modulus of elasticity more significantly. Several empirical models have thus been established to estimate elastic modulus reduction based on the ASR expansion only for condition assessment and capacity evaluation of the distressed structures. However, it has been observed from experimental studies in the literature that for any given level of ASR expansion, there are significant variations on the measured modulus of elasticity. In fact, many other factors, such as cement content, reactive aggregate type, exposure condition, additional alkali and concrete strength, have been commonly known in contribution to changes of concrete elastic modulus due to ASR. In this study, an artificial intelligent model using artificial neural network (ANN) is proposed for the first time to provide an innovative approach for evaluation of the elastic modulus of ASR-affected concrete, which is able to take into account contribution of several influence factors. By intelligently fusing multiple information, the proposed ANN model can provide an accurate estimation of the modulus of elasticity, which shows a significant improvement from empirical based models used in current practice. The results also indicate that expansion due to ASR is not the only factor contributing to the stiffness change, and various factors have to be included during the evaluation.

고온시 $40{\sim}100MPa$ 범위의 콘크리트 열적특성에 관한 실험적 연구 (An Experimental Study on the Thermal Properties of High Strength Concrete in the Range of $40{\sim}100MPa$ at High Temperature)

  • 김흥열;전현규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.425-428
    • /
    • 2006
  • In order to estimate the reduction of laodbearing capacity, followed by the attributive change of heat while high strength concrete structure is revealed on fire it is necessary to evaluate, it is necessary to evaluate the property of material under high temperature such as thermal conductivity, specific heat, compressive strength, modulus of rigidity and diminution figure. Therefore, this study is for the purpose of presenting evaluation data for the analysis of thermal behavior about the high strength concrete material under high temperature, through the experiment by manufacturing concrete(40, 50, 60, 80, 100 MPa) commonly used in the construction field. As a result of the study, in the case of physical attribute, it demonstrates a greater fluctuation of change than the one of 30 MPa concrete. In case of specific heat, the high strength concrete, shown the serious diminution between $500{\sim}600^{\circ}C$, presents the thermal change area corresponding to the change of high strength concrete. In compressive strength, regardless of intensity of concrete, all of them show the first intensity loss between normal temperature and $100^{\circ}C$, the dramatic loss beyond $400^{\circ}C$. The concrete weighing above 50 MPa shows a twice lower dramatic intensity loss than the one weighing $30{\sim}40MPa$. The concrete ranging from $60{\sim}80MPa$, shows the biggest diminution of modulus of elasticity under $400^{\circ}C$, which implies the structural unstability of temperature.

  • PDF

A modified shear strength reduction finite element method for soil slope under wetting-drying cycles

  • Tu, Yiliang;Zhong, Zuliang;Luo, Weikun;Liu, Xinrong;Wang, Sui
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.739-756
    • /
    • 2016
  • The shear strength reduction finite element method (SSRFEM) is a powerful tool for slope stability analysis. The factor of safety (FOS) of the slope can be easily calculated only through reducing effective cohesion (c′) and tangent of effective friction angle ($tan{\varphi}^{\prime}$) in equal proportion. However, this method may not be applicable to soil slope under wetting-drying cycles (WDCs), because the influence of WDCs on c′ and $tan{\varphi}^{\prime}$ may be different. To research the method of estimating FOS of soil slopes under WDCs, this paper presents an experimental study firstly to investigate the effects of WDCs on the parameters of shear strength and stiffness. Twelve silty clay samples were subjected to different number of WDCs and then tested with triaxial test equipment. The test results show that WDCs have a degradation effect on shear strength (${\sigma}_1-{\sigma}_3)_f$, secant modulus of elasticity ($E_s$) and c′ while little influence on ${\varphi}^{\prime}$. Hence, conventional SSRFEM which reduces c′ and $tan{\varphi}^{\prime}$ in equal proportion cannot be adopted to compute the FOS of slope under conditions of WDCs. The SSRFEM should be modified. In detail, c′ is merely reduced among shear strength parameters, and elasticity modulus is reduced correspondingly. Besides, a new approach based on sudden substantial changes in the displacement of marked nodes is proposed to identify the slope failure in SSRFEM. Finally, the modified SSRFEM is applied to compute the FOS of a slope example.

고강도 경량콘크리트의 개발, 구조특성 및 실용화 (Development and Application of High-Strength Lightweight Concrete, and its Structural Properties)

  • 최명신;안종문;신성우;강훈;김정식;이재삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.37-44
    • /
    • 1998
  • The objective of this study is development of high strength lightweight concrete and application or structural use. For this, mix proportions for each strength level were selected from lab tests, and adapted to producing ready-mixed concrete in batcher plant. It was very important to prewet the lightweight aggregates sufficiently for producibility and also workability. Splitting tensile strength of high-strength lightweight concrete produced has lower values than that of normal weight concrete, but modulus of rupture and modulus of elasticity are not less than normal weight concrete. The strength reduction factor ($\lambda$) for sand-lightweight concrete make higher than 0.85 present in structures using high-strength lightweight concrete. And it was showed that not parabola distribution but triangular distribution of stress in compression zone.

  • PDF

유연벽면 점탄성 소재 배합비와 저항저감 효과의 상관관계 (Correlation Between the Composition of Compliant Coating Material and Drag Reduction Efficiency)

  • 이인원;안남현
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.389-395
    • /
    • 2009
  • A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Pusan National University. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of $0.55{\times}0.25m^2$ size. A set of the insertions was designed and manufactured: 3 mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic$^{(R)}$ S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss factor were measured accurately for these materials in the frequency range from 40 Hz to 3 kHz. The aging of the materials (variation of their properties) for the period of one year was documented as well. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coating. The strong compliant coating achieved 5% drag reduction within a velocity range $20{\sim}40$ m/s while standard and weak coatings increased drag reduction.

고유동콘크리트의 특성에 관한 실험적 연구 (A Study of the Characteristics of the High-Flowable Concrete)

  • 전현규;김대회;이종찬;지석원;유택동;서치호
    • 한국건축시공학회지
    • /
    • 제3권2호
    • /
    • pp.129-134
    • /
    • 2003
  • In this research, we used fly-ash and blast-furnace slag as substitute material of cement and fine aggregate, and we, through experiments, researched and analyzed the features of high-flowable concrete added high efficiency AE water reduction agent. The results are below. 1. Liquefaction generally presented high-slump flow value; on the other hand, partial segregation was observed in case of mixing proportion with 65 cm slump flow and above. This segregation was partially improved in accordance with mixing admixture. 2. Compressive strength according to mixing admixture and increasing mixing ratio of fly-ash were subject to be declined when it was initially cast-in, but its gap was improved when time was fully passed. 3. After mixing blast-furnace slag and fly-ash as substitute material, the result showed that the modulus of elasticity against freezing & melting was improved according to mixing blast-furnace slag and also increased in accordance with increasing pulverulent-body volume. 4. According to increasing the mixing volume of fly-ash, the durability factor was deteriorated because compressive strength became lower as well as air content was decreased when it was initially case-in. 5. The minimum air content to secure durability was 3.7%, for that reason, we had better secure admixture such as air entraining agent when cast-in high-flowable concrete.

실내모형실험에 의한 핵석 풍화대 지반 특성 산정 (Characterization of Weathered Zone bearing Corestones through Scale Model Test)

  • 우익
    • 지질공학
    • /
    • 제17권3호
    • /
    • pp.435-443
    • /
    • 2007
  • 본 연구에서는 풍화대에 분포하고 있는 핵석지반에 대한 지질공학적 조사와 실내모형실험을 통하여 핵석지반의 공학적 물성을 산정하였다. 핵석이 노출된 세 곳의 산사면에 대한 조사창 조사와 시추공 코어 관찰로 핵석의 분포도와 기하학적 모양을 분석하였다. 현장 핵석분포 및 크기에 대한 조사 자료와 모형실험용 공시체 시편의 크기를 바탕으로 산정된 축소율을 고려하여 5mm이하-평균 2mm의 분쇄-연마된 핵석시료를 실내핵석 실험용으로 사용하였다. 핵석 체적함유비를 0%, 10%, 20%로 달리하면서 토양 직접전단시험 및 석고모형실험을 실시하였고, 이를 통하여 핵석지반의 특성을 구하고자 하였다. 핵석함유 토양의 직접전단실험에서는 핵석 함유량의 증가로 인하여 전단강도가 증가하는 경향을 보여주었다. 핵석함유비가 20%일 경우는 핵석 입자의 맞물림에 의한 점착력의 증가가 마찰각의 변화보다 더욱 전단강도의 상승을 유발시키는 요소로 작용하였다. 핵석 함유비를 달리한 석고모형실험에서는 핵석이 많아질수록 모형시료의 강도 및 탄성계수가 증가하는 경향을 보여주었다. 석고모형실험에서 얻어진 핵석 함유량에 따른 모형의 물성변화률을 현장에서 측정한 풍화대의 물성과 비교하여, 현장에서 핵석함유에 따른 물성을 예측한 결과, 핵석 함유가 0%에서 10%로 증가하면 15%의 일축압축강도 증가를, 핵석 함유가 20%로 증가되면 30%의 일축압축강도 증가를 유발하는 것으로 예측이 되었다.