• 제목/요약/키워드: Modulus coefficient

검색결과 465건 처리시간 0.032초

Nondestructive Evaluation of Strength Performance for Heat-Treated Wood Using Impact Hammer & Transducer

  • Won, Kyung-Rok;Chong, Song-Ho;Hong, Nam-Euy;Kang, Sang-Uk;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권5호
    • /
    • pp.466-473
    • /
    • 2013
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for heat-treated wood under different conditions. The effect of heat treatment on the bending strength and NDE technique using the resonance frequency by impact hammer and force transducer mode for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to MOR. In all conditions, It was found that there were a high correlation at 1% level between dynamic modulus of elasticity and MOR, and static modulus of elasticity and MOR. However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by impact hammer mode is more useful as a nondestructive evaluation method for predicting the MOR of heat-treated wood under different temperature and species conditions.

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

콘크리트 크리프의 확률론적 거동 해석 (The Analysis of Statistical Behavior in Concrete Creep)

  • 김두환;박종철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.237-246
    • /
    • 2001
  • This study is to measure the creep coefficient by 3 days, 7 days and 28 days in the age when loading for the quality assessment of $350kgf/cm^2$ in the high-strength concrete. And it is to analyze the behavior of creep coefficient by applying the experimental data though the compressive strength test, the elastic modulus test and the dry shrinkage test to the ACI-209, AASHTO-94 and CEB/FIP-90, the prediction mode, and the basis of concrete structural design. Also it is to analyze the behavior of short-term creep coefficient during 91 days in the age when loading through the experiment by using the regression analysis, the statistical theory. As applying it to the long-term behavior during 365 days and comparing with the creep prediction mode and examining it, the result from the analysis of the quality of the concrete is as follows. As the result of comparison and analysis about the ACI-209, AASHTO-94 and CEB/FIP-90, the prediction mode, and the basis of concrete structural design, the normal Portland cement class 1 shows the approximate value with the prediction of GEE/PIP-90 and the basis of concrete structural design, but in case of the prediction of ACI-209 and AASHTO-94, there would be worry of underestimation in the application.

  • PDF

Synthesis of Epoxy Functional Siloxane and its Effect on Thermal Stress

  • Hyun, Dae-Sup;Jeong, Noh-Hee
    • 한국응용과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.379-384
    • /
    • 2009
  • Epoxy resin based encapsulants are widely used in semiconductor packaging applications. Epoxy resin based encapsulants are often subject to crack or delamination during the reliability test due to the thermal stress caused by high modulus nature of epoxy resins. Epoxy functional siloxanes are often added into epoxy resin to reduce the modulus so that the thermal stress can be reduced. Epoxy functional siloxanes, additives for reduced modulus, were synthesized and added into the curable epoxy resins. The modulus and the coefficient of thermal expansion (CTE) were also measured to investigate the thermal stress and to see whether the epoxy functional siloxane adversely affects the CTE or not. As a result, around 26% to 72% of thermal stress reduction was observed with no adverse effect on CTE.

Mechanics of kinking and buckling of plastic board drains

  • Madhav, Madhira R.;Park, Yeong Mog;Miura, Norihiko
    • Structural Engineering and Mechanics
    • /
    • 제3권5호
    • /
    • pp.429-443
    • /
    • 1995
  • The deformational response of plastic board drains installed to accelerate consolidation of soft soils, is examined as a problem of downdrag. The drain is modelled as a beam-column in which the axial load increases nonlinearly with depth. The soil response is represented by the Winkler medium whose coefficient of subgrade modulus increases linearly with depth. The governing equations for the drain-soil system are derived and solved as an eigenvalue problem. The critical buckling loads and the shape of the drain are obtained as functions of the normalized subgrade modulus of the soil at the top, the parameters signifying the variation of axial load along the length of the drain and the increase of subgrade modulus with depth. The derived deformed shapes of the drain are consistent with the observed ones.

Comparison of the effects of irradiation on iso-molded, fine grain nuclear graphites: ETU-10, IG-110 and NBG-25

  • Chi, Se-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2359-2366
    • /
    • 2022
  • Selecting graphite grades with superior irradiation characteristics is important task for designers of graphite moderation reactors. To provide reference information and data for graphite selection, the effects of irradiation on three fine-grained, iso-molded nuclear grade graphites, ETU-10, IG-110, and NBG-25, were compared based on irradiation-induced changes in volume, thermal conductivity, dynamic Young's modulus, and coefficient of thermal expansion. Data employed in this study were obtained from reported irradiation test results in the high flux isotope reactor (HFIR)(ORNL) (ETU-10, IG-110) and high flux reactor (HFR)(NRL) (IG-110, NBG-25). Comparisons were made based on the irradiation dose and irradiation temperature. Overall, the three grades showed similar irradiation-induced property change behaviors, which followed the historic data. More or less grade-sensitive behaviors were observed for the changes in volume and thermal conductivity, and, in contrast, grade-insensitive behaviors were observed for dynamic Young's modulus and coefficient of thermal expansion changes. The ETU-10 of the smallest grain size appeared to show a relatively smaller VC to IG-110 and NBG-25. Drastic decrease in the difference in thermal conductivity was observed for ETU-10 and IG-110 after irradiation. The similar irradiation-induced properties changing behaviors observed in this study especially in the DYM and CTE may be attributed to the assumed similar microstructures that evolved from the similar size coke particles and the same forming method.

Fully Rod-like Aromatic Polyimides: Structure, Properties, and Chemical Modifications

  • Moonhor Ree;Shin, Tae-Joo;Lee, Seung-Woo
    • Macromolecular Research
    • /
    • 제9권1호
    • /
    • pp.1-19
    • /
    • 2001
  • Poly(p-phenylene pyromellitimide) and poly(4,4'-biphenylene pyromellitimide) are representatives of fully rod-like polyimides. Their structure and properties in thin films are reviewed. The polymers exhibit some excellent properties such as high molecular packing coefficient, high mechanical modulus, and low thermal expansion coefficient, and low interfacial stress, so that they are very attractive to both industry and academia. However, these polymers are very brittle and thus practically useless. Some chemical modifications to improve such drawback with a little sacrifice of the high modulus are described: i) incorporation of short side groups into the polymer backbone and ii) insertion of proper linkages into the polymer backbone.

  • PDF

표준간극비를 이용한 콘크리트 표면차수벽형 석괴댐 축조재료의 다짐 관리 (Compaction Management of Fill Materials for Concrete Faced Rockfill Dam Using Standard Void Ratio)

  • 김용성
    • 한국농공학회논문집
    • /
    • 제48권4호
    • /
    • pp.59-66
    • /
    • 2006
  • In this study, construction modulus, void ratio and settlement characteristics of 38 CFRD in domestic and foreign countries were investigated from monitoring data. The effect of field dry density and void ratio to dam body was analyzed. The standard void ratio of CFRD that can be easily used by dam designers and field engineers was proposed from the monitoring data. It was confirmed that we can get the degree of compaction needed for reasonable compaction of dam body by calculating the field dry density from inverse operation of the standard void ratio. It was thought that the void ratio of CFRD depends on shape coefficient and in case of a high shape coefficient, the void ratio was high with its void ratio 0.17 -0.38.