• 제목/요약/키워드: Modulus Measurement

검색결과 348건 처리시간 0.025초

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

Nanotribology를 이용한 PMMA 박막의 Hardness와 Elastic Modulus 특성 연구 (Characteristics of Hardness and Elastic Modulus of PMMA Film using Nano-Tribology)

  • 김수인;김현우;노성철;윤덕진;장홍준;이종림;이창우
    • 한국진공학회지
    • /
    • 제18권5호
    • /
    • pp.372-376
    • /
    • 2009
  • 현대 반도체 공정에서 일정한 패턴을 생성하기 위하여 리소그래피(Lithography) 공정을 이용하고 있으나 선폭의 감소로 인하여 기존 UV를 이용한 PR(Photoresist) 이외에 e-beam을 이용한 PMMA(Polymethyl methacrylate) 리소그래피에 대한 관심이 높아지고 있다. 또한 리소그래피에 의하여 생성된 패턴은 이후 세정 공정에서 잔류물을 제거하는 과정에서 패턴 붕괴를 일으키게 되는데 이러한 패턴 붕괴에 대한 방어력은 패턴 형성 물질의 탄성력(Elastic modulus)과 비례하는 것으로 알려져 있다. 이 논문에서 우리는 PMMA의 soft-baking 이후 Hardness(H)와 Elastic modulus(Er)의 변화를 압입력을 25 uN에서 8,500 uN으로 134.52 uN 간격으로 증가시키며 측정하였다. 또한 이 실험에서 Hardness(H)와 Elastic modulus(Er)는 Hysitron사의 Triboindenter를 이용하여 측정하였고 압입팁은 Berkovich 팁을 사용하였다.

유도초음파 분산 특성을 이용한 박판의 탄성계수 측정 (Measurement of Elastic Constants of Thin Metallic Foil by Guided Wave Dispersion Characteristics)

  • 이동진;조윤호;장강원;조승현;안봉영
    • 비파괴검사학회지
    • /
    • 제32권1호
    • /
    • pp.41-46
    • /
    • 2012
  • MEMS/NEMS 구조체의 개발과 응용기술의 발달로 박판 및 박막의 기계적 물성 평가에 대한 요구가 점차 늘어나고 있다. 기계적 물성은 주로 인장시험이나 초음파의 속도 측정으로 평가되어 왔으나, 박판/박막 구조의 경우 기존의 기술로는 측정에 한계가 있어 나노압입시험법, 유도초음파법 등의 새로운 기술이 개발되고 있다. 본 연구에서는 박판 구조의 금속재료의 탄성계수를 평가하기 위하여 EMAT으로 송수신된 박판내에서의 유도초음파 진행 속도를 측정하였으며, 이론적으로 계산된 유도초음파 군속도와 실험적인 군속도의 최적화 과정을 통해 최종적으로 박판의 탄성계수를 평가하였다. 두께 $50{\mu}m$의 니켈 박판에서 측정된 영률은 201.6 GPa이었으며, 나노압입시험법으로 측정된 207 GPa, 참고문헌의 203.7 GPa과 비교하면 약 3% 내에서 일치하는 결과이다.

Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능 (Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Crystal growth and characteristics of lysozyme crystals

  • Kojima, Kenichi
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.3-3
    • /
    • 2002
  • Many studies on crystal growth mechanisms of the hen egg-white lysozyme protein crystals have mainly performed by optical microscopy and atomic force microscopy (AFM). As results, two types of growth mechanisms, which are a two-dimensional nucleation mechanism and a spiral growth mechanism, were identified. However, there was no direct evidence of grown-in screw dislocations at the spiral sites. We first observed the screw dislocations in tetragonal lysozyme crystals using synchrotron X-ray topography. In addition, to confirm the characteristics of dislocations, we have observed some elastic constants in lysozyme crystals in terms of the sound velocity measurement by pulse echo methods. Tetragonal hen egg-white lysozyme crystals were grown by the concentration gradient method. The crystals were grown in test tubes, with an inner diameter of 8 ㎜ and 80 ㎜ in length, held vertically. The test tubes were kept at 23C for 2 weeks. The maximum size of crystals were 3×3×4 ㎟. The high quality crystals were examined by Laue topography with a water filter using synchrotron radiation. Figure is a X-ray topograph. Several straight screw dislocations were observed. We also determined Burgers vector to be a [110] direction. The measurement of sound velocity was performed by the digital signal processing method. the crystals were placed in stainless steel vessel, which was filled with lysozyme solution used for crystal growth. We observed the longitudinal sound velocity along the [110] direction in the tetragonal is obtained to be 1817 ㎧. Therefore, Young modulus and shear modulus were evaluated to be 2.70 Gpa and 1.02 Gpa, respectively, if we assumed Poisson ratio is 0.33. These results will be discussed at the meeting.

  • PDF

동적 지반물성측정장치(SIH, Soil Impact Hammer)의 국내 적용성 평가 (Investigation of Domestic Application for Soil Impact Hammer(SIH))

  • 박재영;석정우;황대진;양구승
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.411-418
    • /
    • 2002
  • In domestic road construction sites, the compaction control based on strength are widely performed through the direct method with high accuracy, such as Plate Loading Test or Field CBR test. It is impossible to manage all construction sites using the direct method because the direct method requires heavy reaction loads and long measurement time. Therefore, it is necessary to apply the indirect method that could control the relative density of construction sites on the whole. Indirect methods, such as Cone Penetration Test and Fall Cone Test, require extra time for data analyzing and fixed area for test device. In this paper, the field applicability of Soil Impact Hammer (SIH) was investigated comparing with the results of field measurement tests and laboratory compaction tests. SIH developed by Japan Construction Administration and Asanuma Ltd., is a kind of indirect methods for compaction checking. According to the results of SIH performed in domestic road construction site, the subgrade reaction modulus obtained from SIH are similar to that from Plate loading tests in the range of 10 to 40. In comparison with laboratory compaction test, similar compaction line are shown in the dry side of optimum moisture contents.

  • PDF

나노인덴테이션에 의한 Al-Si-Cu-Mg 합금 폼 셀 벽의 기계적 물성 연구 (A Nanoindentation Based Study of Mechanical Properties of Al-Si-Cu-Mg Alloy Foam Cell Wall)

  • 하산;김엄기;이창훈;이학주;고순규;조성석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.382-387
    • /
    • 2004
  • Nanoindentation technique has been used to measure the mechanical properties of aluminium alloy foam cell walls. Al-Si-Cu-Mg alloy foams of different compositions and different cell morphologies were produced using powder metallurgical method. Cell morphology of the foam was controlled during production by varying foaming time and temperature. Mechanical properties such as hardness and Young's modulus were calculated using two different methods: a continuous stiffness measurement (CSM) and an unloading stiffness measurement (USM) method. Experimental results showed that hardness and Young's modulus of Al-5%(wt.)Si-4%Cu-4%Mg (544 alloy) precursor and foam walls are higher than those of Al-3%Si-2%Cu-2%Mg (322 alloy) precursor and foam walls. It was noticed that mechanical properties of cell wall are different from those of precursor materials.

  • PDF

Strain Transmission Characteristics of Packaged Fiber Bragg Grating Sensors for Structural Health Monitoring

  • Cho, Sung-In;Yoo, Seung-Jae;Kim, Eun-Ho;Lee, In;Kwon, Il-Bum;Yoon, Dong-Jin
    • 비파괴검사학회지
    • /
    • 제30권3호
    • /
    • pp.236-243
    • /
    • 2010
  • Fiber Bragg grating(FBG) sensor arrays can be used to monitor the mechanical behavior of the large composite structures such as wind turbine rotor blades and aircrafts. However, brittle FBG sensors, especially multiplexed FBG sensors are easily damaged when they are installed in the flexible structures. As a protection of brittle FBG sensors, epoxy packaged FBG sensors have been presented in this paper. Finite element analysis and experiments were performed to evaluate the effects of adhesives, packaging materials and the bonding layer thickness on the strain transmission. Two types of epoxy were used for packaging FBG sensors and the sensor probes were attached with various bonding layer thickness. It was observed that thin bonding layer with high elastic modulus ratio of the adhesive to packaging provided good strain transmission. However, the strain transmission was significantly decreased when elastic modulus of the adhesive was much lower than the packaged FBG sensor probe's one.

재하-제하과정에서 발생하는 흙의 변형계수 및 포아송비의 특성 (Characteristics of Deformation Modulus and Poisson's Ratio of Soil by Unconfined Loading-Reloading Axial Compression Process)

  • 송창섭;김명환;김기범;박오현
    • 한국농공학회논문집
    • /
    • 제64권3호
    • /
    • pp.45-52
    • /
    • 2022
  • Prediction of soil behavior should be interpreted based on the level of axial strain in the actual ground. Recently numerical methods have been carried out focus on the state of soil failure. However considered the deformation of soil the prior to failure, mostly the small strain occurring in the elastic range is considered. As a result of calculating the deformation modulus to 50% of the maximum unconfined compression strength, Deformation modulus (E50) showed a tendency to increase according to the degree of compaction by region. The Poisson's ratio during loading-unloading was 0.63, which was higher than the literature value of 0.5. For the unconfined compression test under cyclic loading for the measurement of permanent strain, the maximum compression strength was divided into four step and the test was performed by load step. Changes in permanent strain and deformation modulus were checked by the loading-unloading test for each stage. At 90% compaction, the permanent deformation of the SM sample was 0.21 mm, 0.37 mm, 0.6 mm, and 1.35 mm. The SC samples were 0.1 mm, 0.17 mm, 0.42 mm, and 1.66 mm, and the ML samples were 0.48 mm, 0.95 mm, 1.30 mm, and 1.68 mm.

블리스터 시험법을 이용한 열증착 금박막의 기계적 성질 측정 (Measurement of Mechanical Properties of a Thermally Evaporated Gold Film Using Blister Test)

  • 문호정;함순식;엄윤용;조영호
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.882-890
    • /
    • 1996
  • Mechanical properties, including Young's modulus, residual stress and rupture strength, of a thermally evaporated gold film have been measured form a blister test. In a theoretical study, the priniple of minimum potential energy and that of virtual work have been applied to the pressurized circular membrane problem, and load-deflection relations have been derived for typical membrane deflection mode of spheroidal shape. In an experimental study, circular gold membranes of 4800 A-thickness and 3.5mm diameter were fabricated by the silicon electropolishing technique. Mecahnical properties of the thin gold films were deduced from the load-deflection curves obtained by the blister test, Young's moduli, obtianed from blister test, have been in the range of 45-70 GPa, while those of bulk gold have been in the range of 78-80 GPa. Residual stresses in the evaporated gold films have been measured as 28-110MPa in tension, The rupture strength of the gold film has turned out to be almost equal to that of dental gold alloy (310-380MPa). It has been demonstrated that the present specimen fabrication method and blister test apparatus have been effective for simultaneous measurement of Young's modulus, residual stress and repture strength of thin solid films. Especially, the electropolishing technique employed here has provided a simple and practical way to fabricate thin membranes in a circular or an arbitrary shape, which could not be obtained by the conventional anisotropic silicon mecromachining technique.