• Title/Summary/Keyword: Module technology

Search Result 3,549, Processing Time 0.026 seconds

A Study on the Creative Design of Pulling Module for Silicon Ingot and an Apparatus of Manufacturing Silicon Single Crystal Ingot by using TRIZ(6SC) (TRIZ(6SC)를 활용한 잉곳 인상모듈 및 실리콘 단결정 잉곳 제조장치의 창의적 설계)

  • Hong, Sung Do;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.39-43
    • /
    • 2012
  • This paper presents a study on the design of a pulling module for silicon ingot and an apparatus of manufacturing silicon single crystal ingot using the same method. The pulling module is conceptually designed by using TRIZ. Czochralski method(CZ) is representative way to manufacture single crystal ingot for wafers. The seed can be broken by high tension which is caused by large weight of a silicon ingot. The solution of this problem has been derived using 6SC(6 steps creativity)TRIZ. The pulling module is actuated by DC motor and rollers. High tension in the seed is removed by the rotate-elevate motion of rollers in the pulling module. A rubber belt is included in the rotate-elevate mechanism for increasing friction between rollers and silicon ingot.

GORENSTEIN MODULES UNDER FROBENIUS EXTENSIONS

  • Kong, Fangdi;Wu, Dejun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1567-1579
    • /
    • 2020
  • Let R ⊂ S be a Frobenius extension of rings and M a left S-module and let 𝓧 be a class of left R-modules and 𝒚 a class of left S-modules. Under some conditions it is proven that M is a 𝒚-Gorenstein left S-module if and only if M is an 𝓧-Gorenstein left R-module if and only if S ⊗R M and HomR(S, M) are 𝒚-Gorenstein left S-modules. This statement extends a known corresponding result. In addition, the situations of Ding modules, Gorenstein AC modules and projectively coresolved Gorenstein flat modules are considered under Frobenius extensions.

Design of Automatic Fire Prevention and Suppression System for Photovoltaic Connection Module (태양광 접속반의 자동 화재 예방 및 진압 시스템 설계)

  • Lee, Kang Won;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.33-38
    • /
    • 2022
  • A solar power generation system uses a solar module that collects solar radiation energy, a connecting board that collects DC power generated from the solar module, and a diode to prevent reverse current from flowing from an inverter to the solar module. The existing photovoltaic connection module consists of only fuses and diodes for reverse polarity and overcurrent blocking, and does not have fire diagnosis, prevention, and suppression functions in the event of a fire. To solve this problem, this paper presents a method to monitor the internal state of the photovoltaic connection module using several sensors and to prevent and extinguish a fire using solenoid valves and fire extinguishing agents when a fire is detected. Through the experiment, it was confirmed that the proposed method normally suppresses the fire in event of a fire.

Reverse Osmosis and Nanofiltration Using the Disc-tube-module in the Purification of Landfill Leachate

  • Peters, Thomas A.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.27-38
    • /
    • 1995
  • Based on innovative membrane module concepts reverse osmosis and nanofiltration are going to become important instruments in environmental engineering. One example is the Disc-Tube-module and its application for the purification of landfill leachate. Currently over 45 different landfills are using this ROCHEM DT-module, in some cases combined with the high pressure reverse osmosis versions of this module, operating at up to 120 bar and 200 bar. This state of the art membrane technology and the DTF-module for nanofiltration, developed by ROCHEM on the basis of the DT-module and RO-systems for the purification of landfill leachate, make possible in hybrid processes permeate recovery rates of more than 97 % with concentration factors up to 40.

  • PDF

Analysis on thermal & electrical characteristics variation of PV module with damaged bypass diodes (PV 모듈 내 바이패스 다이오드 손상에 의한 열적 전기적 특성 변화 분석)

  • Shin, Woo-Gyun;Jung, Tae-Hee;Go, Seok-Hwan;Ju, Young-Chul;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.67-75
    • /
    • 2015
  • PV module is conventionally connected in series with some solar cell to adjust the output of module. Some bypass diodes in module are installed to prevent module from hot spot and mismatch power loss. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we study the thermal and electrical characteristics change of module with damaged bypass diode to easily find module with damaged bypass diode in photovoltaic system consisting of many modules. Firstly, the temperature change of bypass diode is measured according to forward and reverse bias current flowing through bypass diode. The maximum surface temperature of damaged bypass diode applied reverse bias is higher than that of normal bypass diode despite flowing equal current. Also, the output change of module with and without damaged bypass diode is observed. The output of module with damaged bypass diode is proportionally reduced by the total number of connected solar cells per one bypass diode. Lastly, the distribution temperature of module with damaged bypass diode is confirmed by IR camera. Temperature of all solar cells connected with damaged bypass diode rises and even hot spot of some solar cells is observed. We confirm that damaged bypass diodes in module lead to power drop of module, temperature rise of module and temperature rise of bypass diode. Those results are used to find module with a damaged bypass diode in system.

Upper Wafer Handling Module Design and Control for Wafer Hybrid Bonding (Wafer Hybrid Bonding을 위한 Upper Wafer Handling 모듈 설계 및 제어)

  • Kim, Tae Ho;Mun, Jea Wook;Choi, Young Man;An, Dahoon;Lee, Hak-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.142-147
    • /
    • 2022
  • After introducing Hybrid Bonding technology into image sensors using stacked sensors and image processors, large quantity production became possible. As a result, it is currently used in most of the CMOS image market in smartphones and other image-based devices worldwide, and almost all stacked CIS manufacturing sites have focused on miniaturization using hybrid bonding. In this study, an upper wafer handling module for Wafer to Wafer Hybrid Bonding developed to increase the alignment and precision between wafers when wafer bonding. The module was divided two parts to reduce error of both the alignment and degree of precision during wafer bonding. Wafer handling module developed both new Tip/Tilt system controlling θx,θy of upper wafer and striker to push upper wafer. Based on this, it was confirmed through the stability evaluation that the upper wafer handling module can be controlled without any problem during W2W hybrid bonding.

Research on operation stability of 7kW Inverter for short distance vehicle using SiC Hybrid module (SiC 하이브리드 모듈을 적용한 근거리용 7kW Inverter 동작 안정성에 대한 연구)

  • Jeon, Joon-Hyeok;Kyoung, Sin-Su;Kim, Hee-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.499-506
    • /
    • 2019
  • This paper is concerned with the operating stability of 7kW inverter using SIC hybrid module and verifies the validity of the simulation results by comparing the result of the loss equation and the simulation result, Simulation results using Si module and SiC hybrid module are compared to compare switch loss and diode loss. Through the loss equation calculation, the conduction loss of SiC Hybrid module is 168W, switching loss is 9.3W, diode loss is 10.5nW, When compared with the simulation results, similar values were shown. As a result of comparing the simulation results of the Si module and the SiC Hybrid module, The total device loss of the Si module was 246.2W, and the total device loss of the SiC Hybrid module was 189.9W. The loss difference was 56.3W, which was about 0.8W. thereby verifying the reverse recovery characteristics of the SiC SBD. In addition, temperature saturation test was conducted to confirm the stability of SiC Hybrid module and Si module under high temperature saturation, In the case of the Si module, the output power was stopped at 4kW, and the SiC Hybrid module was confirmed to operate at 7kW. Based on this, an efficiency graph and a temperature graph are presented, and the Si module is graphed up to 4kW and the SiC Hybrid module is graphed up to 7kW.

A Characterization of Nonnil-Projective Modules

  • Hwankoo Kim;Najib Mahdou;El Houssaine Oubouhou
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Recently, Zhao, Wang, and Pu introduced and studied new concepts of nonnil-commutative diagrams and nonnil-projective modules. They proved that an R-module that is nonnil-isomorphic to a projective module is nonnil-projective, and they proposed the following problem: Is every nonnil-projective module nonnil-isomorphic to some projective module? In this paper, we delve into some new properties of nonnil-commutative diagrams and answer this problem in the affirmative.

Fundamental Study of the Behavior of Thermoelectric Module on Concrete Structure (콘크리트 구조물에서의 열전모듈 거동에 관한 기초연구)

  • Lim, Chisu;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.33-38
    • /
    • 2015
  • PURPOSES : The purpose of this paper is to investigate the application of thermoelectric technology to concrete structures for harvesting solar energy that would otherwise be wasted. In various fields of research, thermoelectric technology using a thermoelectric module is being investigated for utilizing solar energy. METHODS: In our experiment, a halogen lamp was used to produce heat energy instead of the solar heat. A data logger was used to record the generated voltage over time from the thermoelectric module mounted on a concrete specimen. In order to increase the efficiency of energy harvesting, various factors such as color, architecture, and the ability to prevent heat absorption by the concrete surface were investigated for the placement of the thermoelectric module. RESULTS : The thermoelectric module produced a voltage using the temperature difference between the lower and upper sides of the module. When the concrete specimen was coated with an aluminum foil, a high electric power was measured. In addition, for the power generated at low temperatures, it was confirmed that the voltage was generated steadily. CONCLUSIONS: Thermoelectric technology for energy harvesting can be applied to concrete structures for generating electric power. The generated electricity can be used to power sensors used in structure monitoring in the future.

A Study on the Analysis of the Output Characteristics of the Floating Photovoltaic System (수상태양광발전시스템의 출력 특성 분석에 관한 연구)

  • Choi, Won Yong;Lee, Jae-Hyeong;Choa, Sung-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.312-317
    • /
    • 2017
  • In this paper, the effects of environmental variables on the output of the floating photovoltaic water systems, which were installed at the Hapcheon dam in South Korea, were investigated, and the correlations between them were analyzed. The system output was linearly proportional to the solar radiation or irradiance. The output was large in spring and autumn because of high irradiance, but low in the summer when the solar module temperature was high. The influence of the module temperature on the system output was limited in the summer, during which the module temperature change affected the system output more than the change of the irradiance did. In addition, in winter and summer, the module temperature tended to decrease with increasing windspeed, but windspeed did not affect module temperature significantly in the spring and autumn. On the other hand, in winter and spring, the irradiance decreased as the windspeed increased because of movement (or circulation) of the photovoltaic modules.