• 제목/요약/키워드: Module Temperature

검색결과 1,225건 처리시간 0.028초

방열핀을 부착한 태양전지 모듈의 열적특성 연구 (A Study on the Thermal Characteristics of Photovoltaic Modules with Fin)

  • 김종필;임호;전충환;장영준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.114-117
    • /
    • 2009
  • The performance of PV module applying the photovoltaic effects of the semiconductor is affected by temperature. Until now, most of PV module show that the power and efficiency falls at a rate of ${\sim}0.5%/^{\circ}C$ and ${\sim}0.05%/^{\circ}C$ respectively as increase of ambient temperature. In this study, the effect of fins attached to the backside of PV module was investigated through a thermal analysis program and simulation model. The result shows that the inner temperature of PV module with fin falls about $10^{\circ}C$ compare to that of ordinary PV module.

  • PDF

온도차 및 부하 저항에 따른 열전모듈의 발전 특성 분석 (Experimental Study on the Power Generation of a Thermoelectric Module with Temperature Difference and Load Resistance)

  • 이공훈;김욱중;고득용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1942-1947
    • /
    • 2007
  • A thermoelectric module can be used for cooling or power generation. The basic requirements to achieve a significant thermoelectric performance are the same for both generators and coolers. Thermoelectric modules with $Bi_2Te_3$ materials are usually employed in the cooling applications below room temperature but it can also be used for the power generation in the similar temperature range. In the present study, the power generation with a $Bi_2Te_3$ thermoelectric module has been investigated. The temperature difference between the hot and cold sides of the module is maintained with electric heater and cold water from the circulating water bath. The result shows that the electric current generated increases with temperature difference and decreases with the load resistance. However, the voltage increases with both the temperature difference and load resistance. The electric power increases with temperature difference and it has the maximum value when the load resistance is about 4 ${\Omega}$ for a given device.

  • PDF

휜이 부착된 강제 공랭 모듈을 실장한 기판의 온도분포에 관한 연구 (Temperature Distribution of an Air-Cooled PCB Mounted with Finned and Finnless Modules)

  • 신대종;박상희;이인태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.624-629
    • /
    • 2001
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around on a module with longitudinal fin heat sink cooled by forced air flow. In the first method, inlet air flow(1-7m/s) and input power(3-5W) was varied after a heated module were placed on an adiabatic floor($320{\times}550{\times}1mm^{3}$). An adiabatic wall temperature was determinated to use liquid crystal film(LCF). In the second method to determinate heat transfer coefficient, inlet air flow(1-7m/s) and the heat flux of rubber heater($0.031-0.062\;W/cm^{2}$) was varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. In addition, surface oil-film visualization were performed to characterize the macroscopic flow-field around a module.

  • PDF

LED Chip 열저항측정을 통한 LED Module 온도분석 (LED Module Temperature Analysis for LED Chip Thermal Resistance Measurement)

  • 정희석;유형열;김정수;이영주
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.164-167
    • /
    • 2009
  • It is difficult to measure junction temperature in the LED Module. According to the arrangement control unit and heat sink, temperature distribution is changed in the LED Module. A method of forecasting LED Module thermal resistance is suggested with measuring LED and PCB board temperature.

  • PDF

전산유동가시화를 활용한 웨이퍼 이송장치의 복사열전달에 관한 연구 (A Study on Radiation Heat Transfer of Wafer Transfer Module Using Computational Flow Visualization)

  • 추민기;정지홍;손동기;고한서
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.58-66
    • /
    • 2022
  • The high heat emitted from the process module and heat jacket may cause errors in semiconductor process equipment. Barriers were designed to reduce the temperature of surface on transfer module. A designed barrier was compared and analyzed by numerical analysis using ANSYS Fluent. The average temperature of barrier and effect of radiation heat transfer were also compared through absorbed radiative heat flux of the barrier. The adoption of the barrier had an effect on the radiative heat transfer reduction of the transfer module rod. The effect of the angles of barrier from 50° to 90° on the heat transfer was investigated using the absorbed radiative heat flux with the average temperature. The angle of barrier of 50° reduced the temperature up to 9.6 %.

수상태양광발전시스템의 출력 특성 분석에 관한 연구 (A Study on the Analysis of the Output Characteristics of the Floating Photovoltaic System)

  • 최원용;이재형;좌성훈
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.312-317
    • /
    • 2017
  • In this paper, the effects of environmental variables on the output of the floating photovoltaic water systems, which were installed at the Hapcheon dam in South Korea, were investigated, and the correlations between them were analyzed. The system output was linearly proportional to the solar radiation or irradiance. The output was large in spring and autumn because of high irradiance, but low in the summer when the solar module temperature was high. The influence of the module temperature on the system output was limited in the summer, during which the module temperature change affected the system output more than the change of the irradiance did. In addition, in winter and summer, the module temperature tended to decrease with increasing windspeed, but windspeed did not affect module temperature significantly in the spring and autumn. On the other hand, in winter and spring, the irradiance decreased as the windspeed increased because of movement (or circulation) of the photovoltaic modules.

데이터를 활용한 태양광 발전 시스템 모듈온도 및 발전량 예측 (Prediction of module temperature and photovoltaic electricity generation by the data of Korea Meteorological Administration)

  • 김용민;문승재
    • 플랜트 저널
    • /
    • 제17권4호
    • /
    • pp.41-52
    • /
    • 2021
  • 본 연구에서는 태양광발전 출력 및 모듈온도 값을 기상청 데이터를 이용하여 예측해보고 실측 데이터와 날씨, 일사량, 주변온도, 풍속별로 비교 분석해보았다. 날씨별 예측정확도는 눈이 오거나, 새벽에 해무가 끼는 날의 데이터를 가장 많이 보유한 맑은날의 데이터의 예측정확도가 가장 낮았다. 일사량에 따른 모듈온도와 발전량의 예측정확도는 일사량이 커질수록 정확도가 떨어졌으며, 주변 온도에 따른 예측정확도는 모듈온도는 주변 온도가 커질수록, 발전량은 주변온도가 낮을수록 예측정확도가 떨어졌다. 풍속은 모듈온도와 발전량 모두 풍속이 높아질수록 예측정확도가 감소하였지만, 풍속이 영향 다른 기상조건에 의한 영향보다 미미하여 그 상관관계를 정의하기가 어려웠다.

전면 액체식 흡열판을 적용한 Unglazed PVT(태양광·열) 모듈의 성능 실험연구 (The Experimental Performance of an Unglazed PV-Thermal Module with Fully Wetted Absorber)

  • 김진희;천진아;김준태
    • KIEAE Journal
    • /
    • 제11권3호
    • /
    • pp.69-73
    • /
    • 2011
  • In general, there are two types of PVT module depending on the existence of the glass in front of PV module: glazed and unglazed. On the other hand, the water-type PVT modules can be classified into two types, according to absorber type: the sheet-and-tube absorber PVT module and the fully wetted absorber PVT module. The aim of this study is to analyze the electrical and thermal performance of a water-type PVT module with fully wetted absorber. For this study, a prototype of unglazed PVT module with fully wetted absorber was designed and built, and both the thermal and electrical performances of the prototype module were measured in outdoor conditions. A conventional mono-crystalline Si PV module was tested alongside the PVT module for their electrical performance comparison. The results showed that the thermal efficiency of the PVT module was average 51% and its electrical efficiency was average 14.3% in mean fluid temperature $10-40^{\circ}C$, whereas the electrical efficiency of the conventional PV module was average 12.6%. It is found that the electrical efficiency of the PVT module was improved by approximately 14% compared to that of the PV module. The temperature of PVT module becomes lower due to the cooling effect by the fluid of the absorber. The results proved that the electrical efficiency was higher when the mean fluid temperature was lower.

방열특성 제어를 위한 PWM 전류제어 기반 LED 모듈 개발 (Development of LED Module Control-based PWM Current for Control of Heat-dissipation)

  • 이승현;문한주;허성범;최성대
    • 한국기계가공학회지
    • /
    • 제14권6호
    • /
    • pp.129-135
    • /
    • 2015
  • This paper shows significant methods that improve the lifespan of LED modules as well as efficiently using an aluminum heat-sink for LED module in high power. It proposes a method that raises stability and lifespan to protect LED modules and the power unit when the LED module has been used for a long hours at high temperatures. During the research, we applied a method of pulse-width modulation (PWM) in order to prevent the phenomenon that the entire power of a system is turned off and the lifespan is reduced when the LED nodule reacts to the high temperatures. To protect the LED module and SMPS based on high efficiency, a temperature sensor is attached underneath the circuit board and the sensor measures the temperature of circuit board when the LED module is powered on. The electrical power connected to SMPS is controlled by PWM when the temperature of the LED module reaches a particular temperature.

후면 유리 종류에 따른 투과형 태양광발전모듈의 열 및 광 특성 분석 (Analysis of Thermal and Optical Characteristic of Semi-transparent Module according to Various Types of the Backside Glass)

  • 박경은;강기환;김현일;김경수;유권종;김준태
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.263-268
    • /
    • 2008
  • Building Integrated PV(BIPV) is one of the best fascinating PV application technologies. To apply PV module in building, various factors should be reflected such as installation position, shading, temperature, and so on. Especially a temperature should be considered, for it affects both electrical efficiency of a PV module and heating/cooling load in a building. This study investigates a semitransparent PV module that is designed as finished material for windows. Therefore it needs to considerate about the optical characteristics of the transparent module. It reports the effect of thermal and optical characteristics of the PV module on generation performance. The study was performed by measuring sun spectrum and luminance through the PV modules and by monitoring the temperature and experiment. The results showed that 1 degree temperature rise reduced about 0.48% of output power.

  • PDF