• Title/Summary/Keyword: Module Temperature

Search Result 1,227, Processing Time 0.025 seconds

Application in Ultrafiltration and Reverse Osmosis Module Set with Acrylic Wastewater Pretreated by Coagulation-Filtration-Neutralization Process (응집-여과-중화 공정에 의해 전처리된 아크릴 폐수의 한외여과와 역삼투 모듈 조합 공정에의 적용)

  • Lee, Kwang-Hyun;Kang, Byung-Chul;Lee, Jong-Baek
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • After membrane fouling factors in acrylic wastewater were minimized by pretreatment process accompanied with coagulation-filtration-neutralization, it was utilized in UF/RO process. After composing of ultrafiltration and reverse osmosis module set according to types and kinds of membrane, the separation characteristics were examined with the variation temperature and pressure using pretreated acrylic wastewater by membrane module sets. It was found that permeate flux of UF module in module set 4 was about two${\sim}$three times larger than that of UF module in module set 1. Final quantity of permeate from the module set 2 and module set 3 combined with tubular module was shown very good result. It was shown that the removal efficiency of TDS, T-N and COD was very low and was not dependent on the variation of temperature and pressure in all UF modules. The removal efficiency of TDS, T-N and COD was very excellent in RO module. Final water quality of acrylic wastewater was satisfied with effluent allowances limit and membrane module sets were ascertained to reuse wastewater.

Temperature Control of BIPV system considering out air temperature (외기온도를 고려한 BIPV 시스템의 온도제어)

  • Baek, Jeong-Woo;Ko, Jae-Sun;Choi, Jung-Sik;Kang, Sung-Jun;Jang, Mi-Geum;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

  • PDF

Analysis of Factor on the Temperature Effect on the Output of PV Module (온도에 따른 PV모듈의 출력에 영향을 미치는 요소 분석)

  • Lim, Jong-Log;Woo, Sung-Cheol;Jung, Tae-Hee;Min, Yong-Ki;Won, Chang-Sub;Ahn, Hyung-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.365-370
    • /
    • 2013
  • Generally, photovoltaic modules consist of glass, EVA, Solar Cell, back sheet and ribbon. But EVA, solar cell, ribbon affect electric output with temperature. EVA is a change in the transmittance of light from the sun. In addition, the solar cell output is decreased with temperature and the ribbon increases resistance. Transmittance and reflectance of glass and EVA were measured. In this paper, the characteristics of the components of PV module as EVA and Glass, ribbon were studied by variable temperature. effects on material properties investigated. As a result, glass is independent in temperature variation. EVA was the reduction 1~4% in transmittance. Solar cell decrease 0.469[%/$^{\circ}C$] in electric output by temperature variation. Other factors was controlled in solar cell..

Junction Temperature Prediction of IGBT Power Module Based on BP Neural Network

  • Wu, Junke;Zhou, Luowei;Du, Xiong;Sun, Pengju
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.970-977
    • /
    • 2014
  • In this paper, the artificial neural network is used to predict the junction temperature of the IGBT power module, by measuring the temperature sensitive electrical parameters (TSEP) of the module. An experiment circuit is built to measure saturation voltage drop and collector current under different temperature. In order to solve the nonlinear problem of TSEP approach as a junction temperature evaluation method, a Back Propagation (BP) neural network prediction model is established by using the Matlab. With the advantages of non-contact, high sensitivity, and without package open, the proposed method is also potentially promising for on-line junction temperature measurement. The Matlab simulation results show that BP neural network gives a more accuracy results, compared with the method of polynomial fitting.

Development of Cooling Garment for Extremely Hot Environment Using a Peltier Device and its Comfort Properties (고온환경 작업을 위한 펠티어 소자 냉각복 개발 및 쾌적성 평가)

  • Jung, Ye-Lee;Chae, Young-Jin;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • This paper reports on a prototype cooling garment applying a cooling module. The cooling module was composed of a Peltier device, a cold sink, a heat sink and two fans. A constant box was used to evaluate the cooling effect of the module. Two cooling modules were attached on each side of the garment. The wear trial was conducted using 10 male subjects in an environmental chamber maintained at $30{\pm}0.5^{\circ}C$, $50{\pm}5%$RH. Subjective sensations of thermal, humidity, and comfort were surveyed. Statistical package SPSS12.0 was used for the t-test and the Wilcoxon signed-rank test. The results showed that most effective cooling module decreased the temperature of the constant temperature box by $-4.9^{\circ}C$. The micro-temperature of the cooling garment with a Peltier device was lower than the control garment during the exercise. In particular, the chest skin temperature was $1.5^{\circ}C$ lower with the cooling garment than the control. The maximum temperature difference was $-2.57^{\circ}C$ on the sides of the $1^{st}$ layer. Subjective thermal sensation from wear trials of the Peltier device attached garment was lower than the control garment. Subjects felt more comfortable with the cooling garment in almost all the periods.

The Effect of PID Generation by Components of the PV Module (태양전지 모듈의 구성 요소가 PID 발생에 미치는 영향)

  • Kim, Han-Byul;Jung, Tae-Hee;Kang, Gi-Hwan;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.760-765
    • /
    • 2013
  • PID (potential induced degradation) of PV module is the degradation of module due to the high potential difference between the front surface of solar cells and ground when PV modules operate under high humidity and temperature conditions. PID is generally derived from the positive sodium ions in front glass that are accumulated on P-type solar cells. Therefore, some papers for the electrical characteristic of only front components as glass, EVA sheet, solar cell under PID generation condition were revealed. In this paper, we analyzed the different outputs of module with PID by considering the all parts of module including the back side elements such as glass, back sheet. Mini modules with one solar cell were fabricated with the various parts on front and back sided of module. To generate PID of module in a short time, the all modules were applied.1,000 V in $85^{\circ}C$, 85% RH. The outputs, dark IV curves and EL images of all modules before and after experiments were also measured to confirm the main components of module for PID generation. From the measured results, the outputs of all modules with front glass were remarkably reduced and the performances of modules with back and front glass were greatly deteriorated. We suggest that the obtained data could be used to reduce the PID phenomenon of diverse modules such as conventional module and BIPV (building integrated photovoltaic) module.

The Design of a Wind Speed & Direction Module and a DSP Sensor Interface System for the Meteorological System (기상계측시스템을 위한 풍향.풍속모듈 및 DSP 센서 인터페이스시스템 설계)

  • Song, Do-Ho;Joo, Jae-Hun;Ock, Gi-Tae;Kim, Sang-Gab;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1478-1485
    • /
    • 2007
  • In this paper, a meteorological system including a wind speed & direction module and the DSP(Digital Signal Processor) sensor interface circuit board are proposed. This DSP system accepts and process the informations from a wind speed & direction module, the atmospheric pressure sensor, the ambient air temperature sensor and transfers it to the PC monitoring system. Especially, a wind speed & direction module and a DSP hardware are directly designed and applied. A wind speed & direction module have a construction that it have four film type RID(Resistive Temperature Detectors) resistive sensor adhered around the circular metal body heated constantly by heating coil for obtaining vector informations about wind. By this structure, the module is enabled precise measurement having a robustness about vibration, humidity, corrosion. A sensor signal processing circuit is using TMS320F2812 TI(Texas Instrument) Corporation high speed DSP. An economical meteorological system could be constructed through the data from wind speed & direction module and by the fast processing of DSP interface circuit board.

Temperature Compensation Algorithm of Nondispersive Infrared (NDIR) Gas Sensor (비분산 적외선 가스센서의 온도보상 알고리즘)

  • Park, Jong-Seon;Yi, Seung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.51-55
    • /
    • 2011
  • This paper describes the temperature compensation algorithm using thermopile detector for nondispersive infrared methane gas sensor. From the output voltage of thermistor that is attached onto the infrared detector, the ambient temperature was extracted. The effects of temperatures on the properties of sensor module (the characteristics of narrow bandpass filter, optical cavity and infrared lamp, and gas absorption coefficient times optical path length) have been introduced in order to implement the temperature compensation algorithm. Even though the measurement error of developed sensor module was in the range of $\pm$ 1,500 ppm, after programming the temperature compensation algorithm, the developed sensor module shows a high accuracy less than +180 ppm error within $20^{\circ}C$ temperature variation.

DTS-based Temperature Monitoring and Analysis of Battery Cell Deterioration Characteristics by Temperature Condition (DTS 기반 온도 감시 및 온도 조건에서의 배터리 셀 열화 특성 분석)

  • SoonJong, Kwon;Soo-Yeon, Kim;Jin, Hwang;Sang-Kyun, Woo;Bong-Suck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • As ESS safety issues increase recently, there is a need to more precisely monitor the temperature of the ESS. In this paper, DTS technology for temperature monitoring of ESS batteries is introduced and the temperature measurement principle is explained. The temperature of the battery module is measured using the DTS system, and the thermal deviation between battery cells inside the battery module is analyzed. In order to analyze how thermal imbalance affects the charging and discharging performance of the battery, an accelerated degradation test was conducted. Cycle life characteristics analysis, battery surface temperature change, and AC impedance characteristics were conducted to analyze how the performance of battery cells differs according to temperature conditions.

A study of Comparative Analysis of CPV and PV Module through Long-term Outdoor Testing (장기 Outdoor Test를 통한 CPV와 PV 모듈의 발전량 비교분석)

  • Kim, Minsu;Lee, Yuri;Cho, Minje;Oh, Soo Young;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Today, photovoltaic power generation mostly uses Si crystalline solar cell modules. The most vulnerable part of the Si solar cell module is that the power generation decreases due to the temperature rise. But, it is widely used because of low installation cost. In the solar market, where Si crystalline solar cell modules are widely used. The CPV (Concentrated Photovoltaic) module appeared in the solar market. The CPV module reduces the manufacturing cost of the solar cell by using non-Si in the solar cell. Also, there is an advantage that a rise in temperature does not cause a drop in power generation. But this requires high technology to install and has a disadvantage that the initial installation cost is expensive compared to normal Si solar cell module. So that we built a testbed to see these characteristics. The testbed was used to measure the amount of power generation in a long-term outdoor environment and compared with the general Si solar cell module.