• Title/Summary/Keyword: Modulation-transfer Function

Search Result 297, Processing Time 0.023 seconds

Analysis of the application of image quality assessment method for mobile tunnel scanning system (이동식 터널 스캐닝 시스템의 이미지 품질 평가 기법의 적용성 분석)

  • Chulhee Lee;Dongku Kim;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.365-384
    • /
    • 2024
  • The development of scanning technology is accelerating for safer and more efficient automated inspection than human-based inspection. Research on automatically detecting facility damage from images collected using computer vision technology is also increasing. The pixel size, quality, and quantity of an image can affect the performance of deep learning or image processing for automatic damage detection. This study is a basic to acquire high-quality raw image data and camera performance of a mobile tunnel scanning system for automatic detection of damage based on deep learning, and proposes a method to quantitatively evaluate image quality. A test chart was attached to a panel device capable of simulating a moving speed of 40 km/h, and an indoor test was performed using the international standard ISO 12233 method. Existing image quality evaluation methods were applied to evaluate the quality of images obtained in indoor experiments. It was determined that the shutter speed of the camera is closely related to the motion blur that occurs in the image. Modulation transfer function (MTF), one of the image quality evaluation method, can objectively evaluate image quality and was judged to be consistent with visual observation.

Improvement of the Shannon Approximation to Correct Effects of Mid-spatial Frequency Wavefront Errors of Concentric Ring Structure in MTF Prediction of Optical Systems (광학계의 MTF 예측에서 동심원 구조의 중간 공간 주파수 파면 오차의 영향이 보정된 Shannon 근사식)

  • Seong-Ho Bae;Ho-Soon Yang;In-Ung Song;Sang-Won Park;Hakyong Kihm;Jong Ung Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.210-217
    • /
    • 2024
  • We investigate the effects of mid-spatial frequency wavefront errors on the modulation transfer function (MTF) of optical imaging systems such as airborne cameras and astronomical telescopes. To reduce the prediction error of the MTF, an improved Shannon approximation is proposed. The Shannon approximation is useful for low-order wavefront errors, but it has limitations in predicting MTF with high-order wavefront errors, especially those caused by mid-spatial frequency errors from the manufacturing process of aspheric optical components. In this study, we analyze the impacts of concentric ring-shaped mid-spatial frequency wavefront errors on the MTF using MATLAB and Code V simulations and propose a method to improve the Shannon approximation, which has a new correction factor (K-factor).

Dynamic Characterization of Noise and Vibration Transmission Paths in Linear Cyclic Systems (I)-Theory-

  • Kim, Han-Jun;Cho, Young-Man
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1051-1060
    • /
    • 2000
  • Linear cyclic systems (LCS's) are a class of systems whose dynamic behavior changes cyclically. Such cyclic behavior is ubiquitous in systems with fundamentally repetitive motions (e. g. all rotating machinery). Yet, the knowledge of the noise and vibration transmission paths in LCS's is quite limited due to the time-varying nature of their dynamics. The first part of this two-part paper derives a generic expression that describes how the noise and/or vibration are transmitted between two (or multiple) locations in the LCS's. An analysis via the Fourier series and Fourier transform (FT) plays a major role in deriving this expression that turns out to be transfer function dependent upon the cycle position of the system. The cyclic nature of the LCS' transfer functions is shown to generate a series of amplitude modulated input signals whose carrier frequencies are harmonic multiples of the LCS' fundamental frequency. Applicability of signal processing techniques used in the linear time-invariant systems (LTIS's to the general LCSs is also discussed. Then, a criterion is proposed to determine how well a LCS can be approximated as a LTIS. In Part II, experimental validation of the analyses carried out in Part I is provided.

  • PDF

Robust Digital Image Watermarking Based on MTF of HVS (인간 시각의 MTF에 기반한 견고한 디지털 영상 워터마킹)

  • 홍수기;조상현;최흥문
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.114-117
    • /
    • 2000
  • In this paper, we proposed robust digital image watermarking based on modulation transfer function (MTF) of human visual system (HVS). Using the proposed method, robust watermarking is possible both in common image processing operations such as cropping and lossy compression and in geometrical transforms such as rotation, scaling, and translation, because it can embed watermark and template signal maximally using MTF of HVS. Experimental results show that the proposed watermarking method is more robust to several common image processing operations and geometrical transforms.

  • PDF

Sharpness-aware Evaluation Methodology for Haze-removal Processing in Automotive Systems

  • Hwang, Seokha;Lee, Youngjoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.390-394
    • /
    • 2016
  • This paper presents a new comparison method for haze-removal algorithms in next-generation automotive systems. Compared to previous peak signal-to-noise ratio-based comparisons, which measure similarity, the proposed modulation transfer function-based method checks sharpness to select a more suitable haze-removal algorithm for lane detection. Among the practical filtering schemes used for a haze-removal algorithm, experimental results show that Gaussian filtering effectively preserves the sharpness of road images, enhancing lane detection accuracy.

Development of Measuring System for Camera Lens Resolution Based on the MTF Performance (MTF 측정에 의한 카메라 렌즈 해상력 검사 시스템 개발)

  • 박희재;신호승;노영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.629-634
    • /
    • 2000
  • This System is developed for the estimation of the Camera Lens Resolution. Signal data proportional to light intensity is obtained and sampled from the 2D CCD. Based on the measured signal. the MTF charateristcs of a camera lens are measured. We could measure the sagittal and tangential MTF in the on and off-axis at the same time. The automatic measurig methods for optimal image plane, magnification, and best marginal direction of test lens are presented.

  • PDF

A Study of Lens Design that Eyepiece is Combined with the Navarro Eye at a On-axis Point (정밀모형안을 포함한 축상점에 대한 렌즈설계의 최적화)

  • Choe, Ga-Eul;Song, Seok-Ho;Kim, Sang-Gi
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.77-78
    • /
    • 2006
  • We introduced a new method for lens design that eyepiece is combined with the Navarro eye. Following Optimization of lens system-Navarro eye combination, final design has the modulation transfer function(MTF) of 0.9 at 50 cycle/mm.

  • PDF

On Using the Human Visual System Model for Subband Coding (시각 시스템 모델을 이용한 Subband 코딩)

  • 박용철;김근숙;차일환;윤대희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.937-943
    • /
    • 1990
  • In this paper, a subband coding scheme using the human visual system(HVS) model for encoding monochrome images is proposed to produce perceptually higher quality images compared with the regular subband coding scheme. The proposed approach first transforms the intensity image to the density image by a point nonlinear transformation. A frequency band dexomposition of the density image is carried out by means of 2-D seaprable quadrature mirror filters, which split the density image spectrum into 16 equall rate subbands. Bits are allocated among the subbands to minimize the weighted mean squar error (WMSE) for differential pulse code modulation(DPCM) coding of the subbands. The weight for each subband is calculated from the modulation transfer function (MTF) of the HVS model at corresponding frequencies. The performances of the proposed approach are evaluated for 256 * 256 monochrome images at the bit rates of 0.5, 0.75 and 1.0 bita per pixel. Computer simulation results indicate that using the HVS model yields more pleasing reconstructed images than regular subband coding approach which does not use HVS model.

  • PDF

Analysis of Channel Modeling and High Speed Data Transmission Channels for Broadband Power-Line Communication (광대역 전력선통신을 위한 채널모델링과 고속데이터 전송특성분석)

  • Rhee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1821-1827
    • /
    • 2007
  • In this paper, an analytic transfer channel modeling function by impulse signal propagation effects in indoor power-line network are analysed. The modeled channel parameters of power line channel including background noise is applied to the OFDM system and we analysis BER for QPSK and 16-QAM modulation signals with simulation. By the representation of gain for OFDM modulation, we can estimate the characteristic parameters of OFDM in Broadband power line communication.

Non-Paraxial Diffraction Effect of High NA Objectives (높은 개구수를 가지는 대물렌즈의 비근축 회절효과)

  • Lee, Jong Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • By using finite ray-tracing and curve fitting, a numerical method to determine the non-paraxial pupil function of a high-NA objective is presented. MTF degradations caused by the non-paraxial diffraction effect are analyzed for on-axial imaging of a far-infrared objective and aberration-free ellipsoidal mirror system. The ellipsoidal mirror system has the same paraxial specifications as the far-infrared objective.