• Title/Summary/Keyword: Modulating pieces

Search Result 2, Processing Time 0.016 seconds

Analysis of Coaxial Magnetic Gear with Low Gear Ratios for Application in Counter Rotating Systems

  • Shin, H.M.;Chang, J.H.
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2015
  • This paper describes the electromagnetic and mechanical characteristics of coaxial magnetic gear (CMG) with a low gear ratio. The analysis models are restricted to a CMG with a gear ratio of less than 2. The electromagnetic characteristics including transmitted torque and iron losses are presented according to the variation of the gear ratio. The pole pairs of high speed rotor are chosen as 6, 8 and 10 by considering the torque capability. As the gear ratio approaches 1, both iron losses on the ferromagnetic materials and eddy current losses on the rotor permanent magnets are increased. The radial and tangential forces on the modulating pieces are calculated using the Maxwell stress tensor. When the maximum force is exerted on the modulating pieces, the mechanical characteristics including stress and deformation are derived by structural analysis. In CMG models with a low gear ratio, the maximum radial force acting on modulating pieces is larger than that in CMG models with a high gear ratio, and the normal stress and normal deformation are increased in a CMG with a low gear ratio. Therefore, modulating pieces should be designed to withstand larger radial forces in CMG with a low gear ratio compared to CMG with a high gear ratio.

Comparison of the Characteristics in the Surface Mounted Permanent Magnet and Flux Concentrating Coaxial Magnetic Gears Having the Solid Cores

  • Shin, Ho-Min;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1275-1284
    • /
    • 2018
  • The coaxial magnetic gear with the flux concentrating structure is known that it has the torque performance advantage over the coaxial magnetic gear having surface mounted permanent magnet, thanks to the flux focusing effect. But, if the solid cores are used in the modulating pieces and rotor cores to consider the mechanical reliability and cost reduction, the operating torque of the flux concentrating coaxial magnetic gear can be significantly diminished because the iron losses at the solid cores affect the actual transmitted torque. Furthermore, the modulating pieces and rotor cores have different characteristics of the iron losses from one another, because the space harmonic components of the magnetic flux density, which cause the iron losses, are different. Thus, in this paper, we focused on the analysis of the characteristics of the space harmonic components of the magnetic flux density and resultant eddy current losses in the surface mounted PM and flux concentrating coaxial magnetic gears, when these coaxial magnetic gears have the solid cores at the modulating pieces and rotor cores. The characteristics of pull-out torque (static torque), operating torque (dynamic torque), and efficiency are also researched, and compared by the 3D finite element analysis (FEA) and experiment.