• Title/Summary/Keyword: Modifying cations

Search Result 7, Processing Time 0.022 seconds

Effect of Phase Stability on the Microstructure Development of α-SiAlON Ceramics

  • Kim, Joosun;Lee, Hae-Weon;Chen, I-Wei
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.118-122
    • /
    • 2003
  • Alpha-SiAlON ceramics having various compositions and modifying cations were investigated with respect to their phase stability, transformation kinetics. and resulting microstructures. Each composition was heat treated at 150$0^{\circ}C$ for 1h and measured the $\alpha$-SiAlON transformation. The phase-boundary composition in the single-phase $\alpha$-SiAlON region showed sluggish transformation from $\alpha$-$Si_3N_4$ to $\alpha$-SiAlON compared to the phase-center composition in the diagram. Using the different rare earth modifying cations, dependence of transformation kinetics on the phase stability in a fixed composition was also explained. By changing size of the stable u-phase region with exchanging cations, systematic change in transformation was observed. Transformation rate of $\alpha$-SiAlON at low temperature has an important role on controlling the final microstructure. Less transformation gives more chances to develop elongated grain in the microstructure.

Effect of Extracellular Cations on the Cehmotherapeutic Efficacy of Anticancer Drugs

  • Park, Sun-Mi;Han, Sang-Bae;Hong, Dong-Ho;Lee, Chang-Woo;Park, Se-Hyung;Jeon, Young-Jin;Kim, Hwan-Mook
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • Cancer development and the efficiency of chemotherapy relies on the patients calcium-related pathological status such as hyper- or hypocalcemica. In the present study, we investigated the effect of extracellular cations such as calcium and magnesium on the therapeutic efficacy of antitumor drugs. The analytic parameters used were cellular drug uptake/excretion and the chemosensitivity of the human breast cancer cell lines, MCF7 and MCF7/ADR. Both calcium and magnesium ions decreased the membrane permeability of cancer cells, which was determined bycell size analysis. These divalent ions also lowered the drug uptake and the cytoplasmic levels of rhodamine 123 and adriamycin, suggesting that they might interfere with the diffusion of these drugs by modifying the physical properties of the cytoplasmic membrane. The acute cytotoxicity of adriamycin after a short period of incubation correlated with changes in its cytoplasmic level. Our results indicate that these extracellular cations might play an important role in the therapeutic activities of anticancer drugs in cancer patients. These results also provide insight a new aspect of chemotherapy, because they suggest that the therapeutic dose of anti-cancer drugs should be modified in cancer-bearing patients presenting with abnormal blood calcium levels.

  • PDF

Chemical Modification of 5-Lipoxygenase from the Korean Red Potato

  • Kim, Kyoung-Ja
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.172-178
    • /
    • 2000
  • The lipoxygenase was purified 35 fold to homogeneity from the Korean red potato by an ammonium sulfate precipitation and DEAE-cellulose column chromatography. The simple purification method is useful for the preparation of pure lipoxygenase. The molecular weight of the enzyme was estimated to be 38,000 by SDS-polyacrylamide gel electrophoreses and Sepharose 6B column chromatography. The purified enzyme with 2 M $(NH_4)_2SO_4$ in a potassium phosphate buffer, pH 7.0, was very stable for 5 months at $-20^{\circ}C$. Because the purified lipoxygenase is very stable, it could be useful for the screening of a lipoxygenase inhibitor. The optimal pH and temperature for lipoxygenase purified from the red potato were found to be pH 9.0. and $30^{\circ}C$, respectively. The Km and Vmax values for linoleic acid of the lipoxygenase purified from the red potato were $48\;{\mu}M$ and $0.03\;{\mu}M$ per minute per milligram of protein, respectively. The enzyme was insensitive to the metal chelating agents tested (2 mM KCN, 1 and 10mM EDTA, and 1 mM $NaN_3$), but was inhibited by several divalent cations, such as $Cu^{++}$, $Co^{++}$ and $Ni^{++}$. The essential amino acids that were involved in the catalytic mechanism of the 5-lipoxygenase from the Korean red potato were determined by chemical modification studies. The catalytic activity of lipoxygenase from the red potato was seriously reduced after treatment with a diethylpyrocarbonate (DEPC) modifying histidine residue and Woodward's reagent (WRK) modifying aspartic/glutamic acid. The inactivation reaction of DEPC (WRK) processed in the form of pseudo-first-order kinetics. The double-logarithmic plot of the observed pseudo-first-order rate constant against the modifier concentration yielded a reaction order 2, indicating that two histidine residues (carboxylic acids) were essential for the lipoxygenase activity from the red potato. The linoleic acid protected the enzyme against inactivation by DEPC(WRK), revealing that histidine and carboxylic amino acids residues were present at the substrate binding site of the enzyme molecules.

  • PDF

Oxygen Sites in Quaternary Ca-Na Aluminosilicate Classes : O-17 Solid-State NMR Study (사성분계 비정질 Ca-Na 알루미노규산염의 산소주변의 원자구조 : O-17 고상핵자기 공명분광학분석)

  • Sung, So-Young;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.347-353
    • /
    • 2006
  • The atomic-nano scale structures of multi-component aluminosilicate glasses have not been well understood in spite of its implications fur dynamics and generation of magma in the natural system due to lack of suitable spectroscopic and scattering experiments. Here, we report O-17 MAS and isotropic projection of 3QMAS NMR spectra for quaternary Na-Ca silicate glasses $[(CaO)_x(Na_2O)_{1-x}]\;(A1_2O_3)_{0.5}(SiO_2)_6,\;CNAS)$ at 14.1 Tesla where atomic configurations around bridging oxygen (Si-O-Si, Si-O-Al) and non bridging oxygen (Na-O-Si, Ca-O-Si, (Na, Ca)-O-Si) are partially resolved. With increasing Na content, the fraction of Na-O-Si increases while those for bridging oxygens remain constant. The Na/Ca ratio apparently affects the peak widths of bridging oxygen peaks (e.g., Si-O-Si)) and thus the topological entropy as well as chemical shifts of the bridging oxygen peaks, implying that both BOs and NBOs are strongly interacting with network modifying cations The effect of cation field strength on the degree of Al-avoidance was also discussed.

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF

Development of novel oxyfluoride glasses and glass ceramics for photoluminescence material by a containerless processing (무용기 용융법을 활용한 형광소재용 결정화 유리 개발)

  • Hyerin Jo;Minsung Hwang;Youngjin Lee;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.181-186
    • /
    • 2023
  • In this study, novel Eu2O3-BaF2-La2O3-B2O3 oxyfluoride glasses and glass ceramics were developed by a containerless processing. Differential thermal analysis (DTA) analysis was performed to analyze the thermophysical properties of oxyfluoride glasses doped with Eu2O3, and photoluminescence (PL) characteristics were analyzed to evaluate the luminous efficiency depending on the degree of crystallinity. The glass transition temperature decreased with increasing BaF2 concentration since BaF2 acts as a network modifier in this glass system. In addition, thermal stability which can be estimated by the difference between the glass transition temperature and the onset temperature of the crystallization decreased with increasing BaF2 contents. The peak related to the BaF2 crystal was confirmed after the crystallization by X-ray Diffraction (XRD) analysis. Photoluminescence intensity increased after the crystallization which indicates that the Eu3+ ions are sited in BaF2 crystal. La 3d5/2 x-ray photoelectron spectroscopy (XPS) and F1s XPS spectra were analyzed to precisely understand the behavior of the fluorine ion in the glass structure. Fluorine tends to bond with the network modifying cations such as La3+ and Ba2+ ions and after the crystallization the La-F bonds decreased because F- ions used to form BaF2 crystals.

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.