• Title/Summary/Keyword: Modified recurrent Gegenbauer orthogonal polynomial neural network

Search Result 2, Processing Time 0.018 seconds

A Six-Phase CRIM Driving CVT using Blend Modified Recurrent Gegenbauer OPNN Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1438-1454
    • /
    • 2016
  • Because the nonlinear and time-varying characteristics of continuously variable transmission (CVT) systems driven by means of a six-phase copper rotor induction motor (CRIM) are unconscious, the control performance obtained for classical linear controllers is disappointing, when compared to more complex, nonlinear control methods. A blend modified recurrent Gegenbauer orthogonal polynomial neural network (OPNN) control system which has the online learning capability to come back to a nonlinear time-varying system, was complied to overcome difficulty in the design of a linear controller for six-phase CRIM driving CVT systems with lumped nonlinear load disturbances. The blend modified recurrent Gegenbauer OPNN control system can carry out examiner control, modified recurrent Gegenbauer OPNN control, and reimbursed control. Additionally, the adaptation law of the online parameters in the modified recurrent Gegenbauer OPNN is established on the Lyapunov stability theorem. The use of an amended artificial bee colony (ABC) optimization technique brought about two optimal learning rates for the parameters, which helped reform convergence. Finally, a comparison of the experimental results of the present study with those of previous studies demonstrates the high control performance of the proposed control scheme.

SynRM Driving CVT System Using an ARGOPNN with MPSO Control System

  • Lin, Chih-Hong;Chang, Kuo-Tsai
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.771-783
    • /
    • 2019
  • Due to nonlinear-synthetic uncertainty including the total unknown nonlinear load torque, the total parameter variation and the fixed load torque, a synchronous reluctance motor (SynRM) driving a continuously variable transmission (CVT) system causes a lot of nonlinear effects. Linear control methods make it hard to achieve good control performance. To increase the control performance and reduce the influence of nonlinear time-synthetic uncertainty, an admixed recurrent Gegenbauer orthogonal polynomials neural network (ARGOPNN) with a modified particle swarm optimization (MPSO) control system is proposed to achieve better control performance. The ARGOPNN with a MPSO control system is composed of an observer controller, a recurrent Gegenbauer orthogonal polynomial neural network (RGOPNN) controller and a remunerated controller. To insure the stability of the control system, the RGOPNN controller with an adaptive law and the remunerated controller with a reckoned law are derived according to the Lyapunov stability theorem. In addition, the two learning rates of the weights in the RGOPNN are regulating by using the MPSO algorithm to enhance convergence. Finally, three types of experimental results with comparative studies are presented to confirm the usefulness of the proposed ARGOPNN with a MPSO control system.