• Title/Summary/Keyword: Modified flow-volume method

Search Result 74, Processing Time 0.028 seconds

Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters (지상인자에 의한 순간단위도 유도와 유출량 예측)

  • 천만복;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF

Gas Pemeation of pure $CO_{2}$ and $N_{2}$ through plasma-Treated Polypropylene Membranes

  • Lee, Woo-Sup;Rew, Dae-Sun;Bae, Seong-Youl;Kumazawa, Hidehiro
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 1999
  • The surface of polypropylene membrane was modified by plasma treatment using Ar,$N_{2}$, $NH_{2}$ and $O_{2}$ Permeabilities for $CO_{2}$, $N_{2}$ and separation factor for $CO_{2}$ relative to $N_{2}$ were measured. The permeation experiments were performed by a variable volume method at $25^{\circ}C$ and 0.303MPa. The effects of the plasma conditions such as treatement time power input gas flow rate and pressure in the reactor on the transport properties of modified membrane were investigated. The surface of the plasma treated membrane was analyzed by means of FTIR-ATR XPS and AFM. The surface structure of the plasma treated membrane was fairly different from that of the untreated membrane. Although the permeation rates for both $CO_{2}$ and $N_{2}$ decreased with increasing plasma treatement time the separation factor was found to be improved by the plasma treatement. The operating conditions of plasma treatement imposed on membranes had notable effect on the permeability and separation factor.

  • PDF

The Simple in Vivo Evaluation Method for Blood-Brain Barrier Permeability of Drugs in Mice (생쥐에 있어서 약물의 혈액-뇌 관문 투과성 평가를 위한 간편한 in vivo 방법)

  • Kang, Young-Sook;Kim, You-Jung
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • This study compared the permeability of $[^3H]taurine,\;[^3H]phenylalanine,\;and\;[^3H]oxytocin$ through the blood-brain barrier (BBB) in mice and rats with common carotid artery perfusion (CCAP) method that modified internal carotid artery perfusion (ICAP) method. External carotid artery (ECA) was cannulated with coagulating pterygopalatine artery (PPA) in ICAP method, while CCA was cannulated without coagulating PPA in CCAP method. Also, for evaluation of BBB permeability of drugs in mice and rats, we used intravenous injection technique. The results of CCAP method in mice at a perfusion flow-rate of 2 ml/min, the brian volume of distribution $(V_D)$ of $[^{14}C]sucrose,\;[^3H]taurine,\;[^3H]phenylalanine,\;and\;[^3H]oxytocin$ were similar to the result of ICAP method in rats at perfusion flow rate of 4 ml/min. The area under the plasma concentration-time curve and brain uptake of $[^3H]taurine$ by intravenous injection technique, were $65.5{\pm}9.7%ID^*min/ml\;and\;0.515{\pm}0.093%ID/g$, respectively, in mice, and the corresponding values were $8.00{\pm}0.03%ID^*min/ml\;and\;0.052{\pm}0.003%ID/g$ in rats. But the BBB permeability surface-area product of $[^3H]taurine$ was similar between mice and rats. In conclusion, the CCAP method in mice was simple, fast and comparable to ICAP method in rats for drug permeability through the BBB.

  • PDF

A Numerical Study on the Toxic Gaseous and Solid Pollutant Dispersion in an Open Atmosphere (고-기상 유해물질 대기확산에 관한 수치해석)

  • 이선경;송은영;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.146-154
    • /
    • 1994
  • A series of numerical calculations are performed in order to investigate the dispersion mechanism of toxic gaseous and solid pollutants in extremely short-term and short range. The calculations are carried out in an open space characterized by turbulent boundary layer. The simulation is made by the use of numerical model, in which a control-volume based finite difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling problem. The Reynolds stresses are solved by two-equation, k-$\varepsilon$ model modified for buoyancy. The major parameters consider-ed in this study are temperature, velocity and Injection height of toxic gases, environmental conditions such as temperature and velocity of free stream air, and topographic factor. The results are presented and discussed in detail. The flow field is commonly characterized by the formation of a strong recirculation zone due to the upward motion of the hot toxic gas and ground shear stress. The driving force of the upward motion is explained by the effect of thermal buoyancy of hot gas and the difference of inlet velocity between toxic gas and free stream.

  • PDF

NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK (디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션)

  • Park, J.C.;Kim, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

Simulation of Mold Fluid Flow (주조시 비정상 유동에 대한 수치해석)

  • Kim, Jong-Hyun;Lim, In-Cheol;Kim, Sung-Sik
    • Journal of Korea Foundry Society
    • /
    • v.12 no.1
    • /
    • pp.51-61
    • /
    • 1992
  • 주조시 주형내의 유동해석을 위해서는 시간에 따라 변화하는 자유표면 위치에 대한 정확한 정보가 요구되는 관계로 난제로 여겨져 왔다. 따라서 대부분의 연구는 초기치 속도를 정의하기 위해서 순간충입(instantaneous filling)을 가정하여 수치 해석을 하였던 것이다. 본 연구는 Modified Solution Algorithm-Volume of Fluid Method (MSOLA-VOF)를 개발하는 주조시 주형내의 유동을 수치적으로 해석하며, 유속이 수평 주조, 수직 주조의 경우에 어떤 영향을 미치는가에 대하여 연구하였다. 결론으로 응고 연구에 있어서 초기의 순간충입은 비현실적인 가정이라는 것이 밝혀졌으며, 충입시 초기 속도 분포와 결정 생성은 밀접한 관계가 있음을 알 수 있었다.

  • PDF

A Numerical Simulation of Unsteady Axisymmetric Turbulent Flow in a Reciprocating Engine Including Port/Valve Assembly (축대칭 왕복엔진의 비정상 난류유동에 대한 수치해석)

  • 조진행;유홍선;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.139-149
    • /
    • 1994
  • A numerical simulation of unsteady axisymmetric turbulent flow was performed for a reciprocating engine including port/valve assembly. The governing equations based on a nonorthogonal coordinate formulation with Cartesian velocity components were used and discretised by the finite volume method with non-staggered variable arrangements. The modified $\kappa-\xi$. turbulence model which included the effect of compressibility was used. The results of twodimensional transient calculation for the axisymmetric configuration were compared with the experimental data. Although slightly low rms velocity was predicted compared to the experimental data, predicted velocity distributions at the valve exit and in-cylinder region showed good agreements with the experimental data. The flow at the valve exit was separated at the same valve lift position with the experimental data. Two vortices incylinder region were generated during the initial intake process. The clockwise main vortex became strong and moved upward to the top wall. The counter-clockwise second vortex became weak and stick to the upper left corner of the cylinder. After middle intake process, new vortex adjacent to upper cylinder wall appeared by the piston motion and therefore, the in-cylinder flow was formed into three vortices. The cylinder pressure just before bottom dead center of piston was higher than inlet pressure and then the reverse flow occured at the valve exit. The in-cylinder flow characteristics were strongly dependent on piston motion, but insensitive to valve motion.

A Numerical Study of the 2-D Cold Flow for a Qubec City Stoker Incinerator (큐벡시 스토커 소각로 2차원 비반응 유동장 수치해석)

  • 박지영;송은영;장동순
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.268-275
    • /
    • 1993
  • A series of parametric investigations are performed in order to resolve the flow characteristic of a Quebec city stoker incinerator. The parameters considered in this study are five internal configurations of the Quebec city stoker itself and its modified ones, primary air velocity, the injection velocity and angle of the secondary air, and the reduction of the stoker exit area. A control-volume based finite-difference method by Patankar together with the power-law scheme is employed for discretization. The resolution of the pressure-velocity coupling is made by the use of SIMPLEC algorithm. The standard, two equation, k-$\varepsilon$ model is incorporated for the closure of turbulence. The size of recirculation region, turbulent viscosity, the mass fraction of the secondary air and pressure drop are calculated in order to analyze the characteristics of flow field. The results are physically acceptable and discussed in detail. The flow field of the Quebec city stoker shows the strong recirculation zone together with the high turbulence intensity over the upper part of the incinerator.

  • PDF

A Study on Adsorption of Volatile Organic Compound by Activated Carbon Fiber Coated with Dielectric Heating Element and Desorption by Applying Microwave (유전가열물질을 코팅한 활성탄소섬유의 휘발성 유기화합물 흡착 및 마이크로파 인가에 의한 탈착 연구)

  • Kim, Sang-Guk;Chang, Ye-Rim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.122-132
    • /
    • 2009
  • Adsorption of toluene by activated carbon fiber (ACF) coated with dielectric heating element and desorption by applying microwave were investigated. In order to prepare adsorbent so that VOC can be desorbed by microwave heating, fine dielectric heating element with nano size was coated on the surface of the ACF using hybrid binder. Eight adsorbents (ACF-DHE, Activated Carbon Fiber coated with Dielectric Heating Element) were prepared with different amount of dielectric heating element, kinds of hybrid binder, and solvent. In order to investigate adsorption characteristics, BET surface area, pore volume, and average pore size were measured for each adsorbent including ACF. Breakthrough experiments with toluene concentration, flow rate, bed length using fixed bed reactor were performed to investigate adsorbality of adsorbent, and results were compared with that of the ACF. Desorption reactor was constructed with modified microwave oven to investigate heating effect on ACF-DHE by applying microwave power. Each adsorbent saturated with toluene were put into desorption reactor. Composition of desorbed gas generated by applying controlled microwave power to reactor was measured. Up to now, hot air desorption method has been used. Experimental results showed that desorption method with new adsorbent prepared by coating dielectric heating element on ACF can be used for industrial application.

Optimum Design of a Viscous-driven Micropump with Tandem Rotating Cylinders (한 쌍의 실린더를 가진 점성구동 마이크로 펌프의 최적설계)

  • Choi, Hyung-Il;Kim, Ki-Dong;Cho, Il-Dae;Choi, Dong-Hoon;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.378-385
    • /
    • 2004
  • Viscous-driven pumping is a very promising type in microscale applications. However, there exist a few disadvantages such as low efficiency and small volume flow rate. In the present study, a pump with tandem rotating cylinders and its optimum synthesis are proposed fur enhancing pumping performance. First, using an unstructured grid CFD method, we investigate the effects of geometrical parameters and then the performance of the pump with tandem cylinders is evaluated. Next, an optimum design synthesis tool is constructed by combining the aforementioned CFD analysis model with the mathematical optimization model, namely, Modified Method of Feasible Directions (MMFD). This technique is used to optimize the geometrical parameters of the pump, fur maximizing pumping efficiency. From the optimization results, it is believed that the present optimum synthesis is robust and has a potential fur other microfluidic device design.