• 제목/요약/키워드: Modified factorization method

검색결과 13건 처리시간 0.022초

Face Recognition Robust to Local Distortion Using Modified ICA Basis Image

  • Kim Jong-Sun;Yi June-Ho
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2006년도 하계학술대회
    • /
    • pp.251-257
    • /
    • 2006
  • The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of 'recognition by parts.' It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Non-negative Matrix Factorization)and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architecture II, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortion

  • PDF

비이진 내재적 피드백 자료를 위한 변형된 베이지안 개인화 순위 방법 (Modified Bayesian personalized ranking for non-binary implicit feedback)

  • 김동우;이은령
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.1015-1025
    • /
    • 2017
  • 베이지안개인화순위(Bayesian personalized ranking) 방법은 내재적 피드백 자료를 분석하는 최첨단 추천시스템 통계기법 중 하나이다. 하지만, 기존의 베이지안개인화순위 방법은 내재적 피드백 자료를 변환한 이진 자료만을 고려하기 때문에 정보의 손실이 있을 수 있다는 단점이 있다. 이를 해결하기 위해 본 논문에서는 내재적 피드백 자료의 수치적 크기에 기반한 확실함의 정도(level of confidence)를 고려하는 변형베이지안개인화순위 방법을 제안한다. 제안한 방법은 기존 방법처럼 상품간의 개인선호도에 관한 직관적인 확률모형 구조를 여전히 지니면서 내재적 피드백의 수치적 크기를 확실함의 정도로 반영할 수 있다는 점에서 유용하다. 또한 제안한 변형 베이지안개인화순위 방법을 수치적으로 구현하기 위해 확률그라디언트하강(stochastic gradient descent) 기법에 기반한 계산 알고리즘을 제시한다. 마지막으로, 스팀 비디오 게임 실제 데이터 분석을 통하여 기존방법에 비해 우수한 성능을 입증한다.

개선된 ICA 기저영상을 이용한 국부적 왜곡에 강인한 얼굴인식 (Face Recognition Robust to Local Distortion using Modified ICA Basis Images)

  • 김종선;이준호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권5호
    • /
    • pp.481-488
    • /
    • 2006
  • 부공간 투영기술(subspace projection)을 이용한 얼굴인식기술의 성능은 이들 기저영상들(basis images)의 특징과 밀접한 관련이 있다. 특히 표정변화와 같은 국부적 왜곡이나 오클루전이 있는 경우의 인식성능은 기저영상들의 특징에 의해 영향을 받게 된다. 부공간 투영기반의 얼굴인식 방법이 오클루전이나 표정변화와 같은 국부적인 왜곡발생에 강인하려면 부분국부적 표현(part-based local representation)의 기저벡터를 갖는 것이 중요하다. 본 연구에서는 국부적 왜곡과 오클루전에 강인한 효과적인 부분국부적 표현방법을 제안한다. 제안한 방법을 LS-ICA(locally salient ICA) 방법이라고 명명하였다. LS-ICA방법은 ICA 구조I의 기저영상을 구하는 과정에서 공간적인 국부성(locality)의 제약조건을 부과함으로써 부분국부적 기저영상(part-based local basis images)을 얻는 방법이다. 결과적으로 공간적으로 현저한 특징만을 포함하는 기저영상을 사용하게 되며, 이는 "Recognition by Parts"의 방법론과 유사하다. LS-ICA방법과 LNMF(Localized Non-negative Matrix Factorization)와 LFA(Local Feature Analysis)와 같은 기존의 부분 표현방법(part-based representation)들에 대해 다양한 얼굴영상 데이타베이스를 사용하여 실험한 결과, LS-ICA방법이 기존의 방법에 비하여 높은 인식성능을 보였으며, 특히 오클루전이나 국부적인 변형이 포함된 얼굴영상에서 뛰어난 인식성능을 보였다.