• Title/Summary/Keyword: Modified bio-sulfur

Search Result 2, Processing Time 0.017 seconds

Effect of Bio-Sulfur Modified by Slaked Lime on Cement Hydration Properties (소석회에 의해 개질된 바이오 황이 시멘트 수화 특성에 미치는 영향)

  • Woong-Geol Lee;Lae-Bong Han;Sung-Hyun Cho;Pyeong-Su Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.509-516
    • /
    • 2023
  • The use of sulfur(S) in concrete has been variously studied as a way to improve salt resistance in concrete. However, sulfur is a solid material and is difficult to powder, which has disadvantages in its usability as an admixture or mixture for cement and concrete. For these problem, polymers such as dicyclopentadiene have been used to modify sulfur, but this also exists in a sticky state after modifying and does not improve the fundamental problem. So, reforming sulfur with slaked lime and the effect on cement hydration was examined by reforming sulfur with slaked lime, and the following conclusions were obtained. Depending on the reaction conditions, slaked lime modified bio-sulfur exists in a slurry state containing unreacted sulfur, unreacted slaked lime, calcium-sulfur(Ca-S) compounds and water. When slaked lime modified bio-sulfur is used as a cement mixture, salt resistance of concrete with slaked lime modified bio-sulfur is to be superior to that of plain concrete. This is believed to be because structure of cement hydrates with slaked lime modified bio-sulfur is to be more dense to that of plain cement hydrates by the continued presence of ettringite and can be used as a cement mixture in concrete.

Physical and Chemical Characteristics of Solvent-Insolubles and Solvent-Solubles in Oilsands Bitumen (Oilsands Bitumen의 용매 불용분 및 용해분의 물리.화학적 특성 연구)

  • Kim, Kyoung-Hoon;Jeon, Sang-Goo;Nho, Nam-Sun;Kim, Kwang-Ho;Shin, Dae-Hyun;Lee, Ki-Bong;Park, Hyo-Nam;Han, Myung-Wan
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • In this work, we investigated the variation of physical and chemical characteristics of solvent-insolubles and solvent-solubles in Canada's Athabasca oil sands by solvent-insolubles experiments. N-Heptane, n-Hexane, and n-Pentane were tested for solvents and asphaltenes were separated from maltenes by using a modified ASTM D 3279 method. Elemental analysis, boiling point distribution (SIMDIS), molecular weight distribution, heavy metal contents, API gravity, viscosity and SARA fractions were measured for thorough samples. The asphaltenes-removed maltenes contained less sulfur and heavy metal amounts and had lower molecular weight than the original bitumen. N-Pentane solvent could lower sulfur and heavy metal amounts, molecular weight, and viscosity of maltenes compared to the other solvents. Eventually, we confirmed that the obtained experimental data could be used as basic informations of bitumen upgrading processes for the production of SCO (synthetic crude oil).