• Title/Summary/Keyword: Modified Wigley

Search Result 16, Processing Time 0.02 seconds

Experimental Study on Impact Loads Acting on Free-falling Modified Wigley

  • Hong, Sa-Young;Kim, Young-Shik;Kyoung, Jo-Hyun;Hong, Seok-Won;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The characteristics of an impact load and pressure were experimentally investigated. Drop tests were carried out using a modified Wigley with CB = 0.56. The vertical force, pressures, and vertical accelerations were measured. A 6-component load cell was used to measure the forces, piezo-electric sensors were used to capture the impact pressure, and strain-gauge type accelerometers were used to measure the vertical accelerations. A 50-kHz sampling rate was applied to capture the peak values. The repeatability of the measured data was confirmed and the basic characteristics of the impact load and pressure such as the linearity to the falling height were observed for all of the measurements. A simple formula was derived to extract the physical impact load from the measured force based on a simple mass-sensor-mass diagram, which was validated by comparing impact forces with existing data using the mathematical model of Faltinsen and Chezhian (2005). The effects of the elasticity of the model and change in acceleration during the water entry were investigated. It is interesting to observe that the impact loads occurred and reached peak values at the same time duration after water entry for all drop heights.

Fundamental Study for the Development of an Optimum Hull Form (최적선형개발에 대한 기초연구)

  • Seo, Kwang-Cheol;Choi, Hee-Jong;Chun, Ho-Hwan;Kim, Moon-Chan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.37-42
    • /
    • 2003
  • Fundamental Study for optimizing ship hull form using SQP(sequential quadratic programming) method in a resistance point of view is presented. The Wigley hull is used as an initial hull and numerical calculations are carried out according to various froude numbers. To obtain the ship resistance the wave resistance is evaluated by a Rankine source panel method with nonlinear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of a hull surface is represented and modified by B-spline surface patch. The displacement and the waterplane transverse 2nd moment of inertia of the hull is fixed during the optimization process. And the shp design program called EzHULL is used to draw the lines of the optimized hull form to perform the model test.

  • PDF

Study for the Development of an Optimum Hull Form using SQP (SQP법을 이용한 최적선형개발에 대한 연구)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Yun, Soon-Dong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.869-875
    • /
    • 2006
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verity the validity of the developed program the numerical calculations for Wigley hull and Series 60( $C_B=0.6$) hull have been performed and the results obtained by the numerical calculations have been compared with the original hulls.

Study for the Development of an Optimum Hull Form using SQP (SQP법을 이용한 최적선형개발에 대한 연구)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Kim, Sang-Hoon;Kim, Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2005
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verity the validity of the developed program the numerical calculations for Wigley hull and Series 60(C${_B}$=0.6) hull had been performed and the results obtained after the numerical calculations had been compared with the original hulls.

  • PDF

Calculation of the Wave Resistance of SWATH Ships using Rankine Source Panel Methods (Rankine 소오스 패널법을 이용한 소수선면 쌍동선의 조파저항계산)

  • Chun, H.H.;Lee, M.H.;Joo, Y.R.;Jang, H.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.27-38
    • /
    • 1997
  • This paper is concerned with the calculation of the wave resistance for SWATH ships based on a low order Rankine source panel method. Two types of free surface boundary conditions, Dawson type (double model approximation) and Kelvin type (free stream approximation) are used. For the free surface boundary calculation, an analytic differentiation is employed instead of implementing a finite difference scheme. Then, the radiation condition is satisfied by, so called, the panel shift method. The numerical results using the above two methods are compared with those using the thin ship/modified slender body approximation and also with the experimental results. The SWATH models considered are a single strut SWATH and a twin strut SWATH together with the variations of two demihull separation distance. In order to prove the validity of the program developed, the numerical calculations for a Wigley mono hull and Wigley twin hulls are compared with the available experimental results.

  • PDF

Study on the Development of an Optimal Hull Form

  • Cho Hee-Jong;Lee Gyoung-Woo;Youn Soon-Dong;Chun Ho-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.603-609
    • /
    • 2005
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP( sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verify the validity of the developed program the numerical calculations for Wigley hull and Series 60 Cb=0.6 hull are performed and the results obtained after the numerical calculations are compared with the initial hulls.

Computation of the Hydrodynamic Coefficients of Ships in Waves by Rankine Source Panel Methods (랜킨소오스 패널법을 이용한 파랑중 선박의 동유체력계수 계산)

  • Jin-Ho Yang;Ki-Jong Song;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.43-51
    • /
    • 2001
  • The unsteady problems of ships in waves are analyzed by a low order panel method with Rankine source. Considering the basic flow as the uniform incoming flow(so called Kelvin flow) and also the double body flow. the solutions to satisfy the governing equation with the boundary conditions are obtained, and these two results are compared. The hydrodynamic coefficients for the modified Wigley hull and Series 60($C_B=0.7$) are computed and compared with the experimental data available and also other computational results published. It is shown that the computational results by the double body approximation agree well with the experimental results compared with those by the uniform Kelvin flow approximation.

  • PDF

A Study on Grid Dependencies of the Numerical Solutions for Ship Viscous Flows (배주위 점성유동장에 대한 수치해의 격자의존성에 관한 연구)

  • Kang, K.J.;Lee, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.58-65
    • /
    • 1994
  • It is very important to understand characteristics of solution due to the variation of computational grid sizes, especially when turbulence model not incorporating wall-function is used. The present paper performs numerical investigation on the grid dependency of numerical solution for three dimensional turbulent flow field around a ship. In the present study a finite volume method with a modified sub-grid scale turbulence model and a numerically constructed non-orthogonal curvilinear coordinate system capable of conforming complex ship geometries are used. Numerical studies are then performed for a mathematical Wigley hull and the Series 60, $C_B=0.8$ hull forms. The results for various grid sizes are compared with each other and with measured data to show grid dependencies of numerical solutions.

  • PDF

Fundamental Study for the Development of an Optimum Hull Form (최적선형개발에 대한 기초연구)

  • 최희종;전호환;정석호
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.32-39
    • /
    • 2004
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP(sequential quadratic programming) to search for different optimal hull forms. The frictional resistance has been estimated using the ITTC 1957 model-ship correlation line formula, and the wave resistance has been evaluated using a potential-flow panel method that is based on Rankine sources with nonlinear free surface boundary conditions. The geometry of a hull surface has been modified using B-spline surface patches, during the whole optimization process. The numerical analyses have been carried out for the modified Wilgey hull at three different speeds (Fn=0.25, 0.316, 0.408), and the calculation results were compared.

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF