• 제목/요약/키워드: Modified Success Rate (MSR)

검색결과 2건 처리시간 0.019초

갑천 유역을 대상으로 토지이용예측모델 비교 분석 (Comparative Analysis of Land Use Change Model at Gapcheon Watershed)

  • 권필주;류지철;이동준;한정호;성윤수;임경재;김기성
    • 한국물환경학회지
    • /
    • 제32권6호
    • /
    • pp.552-561
    • /
    • 2016
  • For the prediction of hydrologic phenomenon, predicting future land use change is a very important task. This study aimed to compare and analyze the two land use change models, CLUE-S and SLEUTH3-R. The analysis of two models were performed based on the MSR value such that the model with more reliable MSR value can be recommended as an appropriate land use change prediction model. The model performance was examined by applying to the Gapcheon A watershed. Land use map of the study area of 2007 obtained from the Ministry of Environment was compared with the predicted land use map obtained from each of the two models. The result from both models showed somewhat similar results. The MSR value obtained from CLUE-S was 0.564, while that from SLEUTH3-R was 0.586. However, when land use map of 2010 was compared with predicted land use map obtained from the two models in same manner, the MSR value obtained from CLUE-S' was 0.500 while that from SLEUTH3-R was decreased to 0.397, an approximately 32.3% decrease from previous value of 2007. Moreover, SLEUTH3-R showed more sensitivity in conversion of urban areas, as compared to other land use types. Therefore, for the prediction of future land use change, CLUE-S model is more reliable than SLEUTH3-R.

Assessment of Rainfall Runoff and Flood Inundation in the Mekong River Basin by Using RRI Model

  • Try, Sophal;Lee, Giha;Yu, Wansik;Oeurng, Chantha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.191-191
    • /
    • 2017
  • Floods have become more widespread and frequent among natural disasters and consisted significant losses of lives and properties worldwide. Flood's impacts are threatening socio-economic and people's lives in the Mekong River Basin every year. The objective of this study is to identify the flood hazard areas and inundation depth in the Mekong River Basin. A rainfall-runoff and flood inundation model is necessary to enhance understanding of characteristic of flooding. Rainfall-Runoff-Inundation (RRI) model, a two-dimensional model capable of simulating rainfall-runoff and flood inundation simultaneously, was applied in this study. HydoSHEDS Topographical data, APPRODITE precipitation, MODIS land use, and river cross section were used as input data for the simulation. The Shuffled Complex Evolution (SCE-UA) global optimization method was integrated with RRI model to calibrate the sensitive parameters. In the present study, we selected flood event in 2000 which was considered as 50-year return period flood in term of discharge volume of 500 km3. The simulated results were compared with observed discharge at the stations along the mainstream and inundation map produced by Dartmouth Flood Observatory and Landsat 7. The results indicated good agreement between observed and simulated discharge with NSE = 0.86 at Stung Treng Station. The model predicted inundation extent with success rate SR = 67.50% and modified success rate MSR = 74.53%. In conclusion, the RRI model was successfully used to simulate rainfall runoff and inundation processes in the large scale Mekong River Basin with a good performance. It is recommended to improve the quality of the input data in order to increase the accuracy of the simulation result.

  • PDF