본 논문은 2-D 물체 정합을 위한 robust oriented Hausdorff measure (ROHM)을 제안하였다. 이 ROHM은 기존의 Hausdorff distance (HD) 알고리듬의 거리 개념을 Hough 변환의 누적기법으로 대치함으로써 제안되었다. 제안한 알고리듬은 distance transform (DT)을 사용하는 변형된 Hough transform으로 생각할 수 있다. 또한 각 화소의 방향각을 사용하여 부적절한 대응관계를 제거하였다. 여러가지 실험영상을 이용한 실험을 통하여 제안한 알고리듬이 기존의 알고리듬들에 비하여 효율적임을 보였다.
To manage large database system with video, effective video indexing and retrieval are required. A large number of video retrieval algorithms have been presented for frame-wise user query or video content query, whereas a few video identification algorithms have been proposed for video sequence query. In this paper, we propose an effective video identification algorithm for video sequence query that employs the Cauchy function of histograms between successive frames and the modified Hausdorff distance. To effectively match the video sequences with a low computational load, we make use of the key frames extracted by the cumulative Cauchy function and compare the set of key frames using the modified Hausdorff distance. Experimental results with several color video sequences show that the proposed algorithm for video identification yields remarkably higher performance than conventional algorithms such as Euclidean metric, and directed divergence methods.
본 논문에서는 영상의 유사성을 측정하는데 많이 이용되는 Hausdorff거리 기법이 텍스트 영상을 검색하는 분야에도 효과적임을 입증하고자 한다. 즉, 시차를 두고 스캔된 임의의 텍스트 영상들의 동일성 여부를 판단할 수 있는 영상기반 텍스트 매칭 기법을 제안하고 이를 위해 지역 밀집도와 Hausdorff 거리를 이용한다. Hausdorff 거리 방법은 처리시간이 오래 걸리는 단점이 존재하는데, 본 논문에서는 지역 밀집도 알고리즘을 이용한 특징점 추출을 수행하여 이를 보완하였다. 우편 봉투에서 얻은 텍스트 영상으로 190개의 동일 영상 190개의 비등일 영상을 만들어 실험을 수행하였다. 기존에 영상 간의 유사도 매칭에 가장 일반적으로 이용되는 이진 상관도 및 Hausdorff 거리 방법과 본 논문에서 제안한 수정된 Hausdorff 방법의 실험 결과를 비교한 결과, 유사한 영역을 찾고 일치하는 정도를 얻는데 있어 다른 방법에 비해 약 2.7%에서 9.0%의 높은 정확률을 얻어 성능의 우수성을 입증하였다.
디지털 영상에서의 얼굴탐색은 얼굴인식을 위한 기본 단계이면서 인식 성능에 큰 영향을 미치는 중요한 처리 단계이다. 템플릿 정합 방식의 객체 검출방식에서 사용되어 얼굴 인식 등에서 좋은 성능을 보이는 Hausdorff 거리는 주어진 점의 집합들 사이에서 기하학적 유사도만을 고려한 측도이므로 원래의 영상이 포함하고 있는 다른 정보들을 추가적으로 이용함으로 효율을 높일 수 있다. 이러한 점에 착안하여 본 논문에서는 점들 사이에 서로 다른 정도를 측정하기 위해서 거리뿐만 아니라 점들 주위의 국지적 계조패턴 정보까지 포함하는 측도를 정의함으로써 보다 정밀한 템플릿 정합결과를 얻는 방법을 제안한다.
The pixel information of the object was obtained sequentially and pixels were clustered to a label by the line labeling method. Feature points were determined by finding the slope for edge pixels after selecting the fixed number of edge pixels. The slope was estimated by the least square method to reduce the detection error. Once a matching point was determined by comparing the feature information of the object and the pattern, the parameters for translation, scaling and rotation were obtained by selecting the longer line of the two which passed through the matching point from left and right sides. Finally, modified Hausdorff Distance has been used to identify the similarity between the object and the given pattern. The multi-label method was developed for recognizing the patterns with more than one label, which performs the modified Hausdorff Distance twice. Experiments have been performed to verify the performance of the proposed algorithm and method for simple target image, complex target image, simple pattern, and complex pattern as well as the partially hidden object. It was proved via experiments that the proposed image matching algorithm for recognizing the object had a good performance of matching.
To manipulate large video contents, effective video indexing and retrieval are required. A large number of video indexing and retrieval algorithms have been presented for frame-wise user query or video content query whereas a relatively few video sequence matching algorithms have been proposed for video sequence query. In this paper, we propose an efficient algorithm that extracts key frames using color histograms and matches the video sequences using edge features. To effectively match video sequences with a low computational load, we make use of the key frames extracted by the cumulative measure and the distance between key frames, and compare two sets of key frames using the modified Hausdorff distance. Experimental results with real sequence show that the proposed video sequence matching algorithm using edge features yields the higher accuracy and performance than conventional methods such as histogram difference, Euclidean metric, Battachaya distance, and directed divergence methods.
Journal of the Korean Data and Information Science Society
/
제15권4호
/
pp.891-898
/
2004
An effective video indexing is required to manipulate large video databases. Most algorithms for video indexing have been commonly used histograms, edges, or motion features. In this paper, we propose an efficient algorithm using the luminance projection for video retrieval. To effectively index the video sequences and to reduce the computational complexity, we use the key frames extracted by the cumulative measure, and compare the set of key frames using the modified Hausdorff distance. Experimental results show that the proposed video indexing and video retrieval algorithm yields the higher accuracy and performance than the conventional algorithm.
본 논문에서는 변형된 하우스더프 거리 (MDH: Modified Hausdorff Distance)를 이용한 눈 개폐 감지 알고리즘을 제안한다. 제안하는 알고리즘은 얼굴 검출과 눈 개폐 감지로 크게 구분된다. 얼굴 영역의 검출을 위하여 고정 크기의 영역 내에서 픽셀 값을 이용하는 지역 구조특성의 MCT (Modified Census Transform)특징기반 방법을 사용하였다. 이후, 검출된 얼굴 영역 내에서 MHD를 이용하여 눈의 위치 및 개폐를 판단한다. 얼굴 검출의 처리절차는 먼저, 오프라인에서 다양한 얼굴 영상에 대해 MCT 이미지를 생성하고, 이를 기반으로 PCA를 이용하여 기준이 되는 특징벡터들을 추출한다. 다음으로, 온라인에서는 입력되는 실험 영상 내에서 새롭게 추출된 특징벡터들과 기준이 되는 특징 벡터들 간의 유클리드 거리를 이용하여 얼굴 영역을 검출하는 순서로 진행된다. 이후, 검출된 얼굴 영역 내에서 MHD 기반의 눈 영역 검출과 템플릿 매칭을 수행하여 눈의 개폐를 감지한다. 제안하는 방법의 성능 검증을 위하여 그레이 스케일 영상 (30FPS, $320{\times}180$)을 입력으로 실험을 수행한 결과, 눈 계폐 검출율에서 평균 94.04%의 정확도를 달성하였다.
To manipulate large video databases, effective video indexing and retrieval are required. A large number of video indexing and retrieval algorithms have been presented for frame-w]so user query or video content query whereas a relatively few video sequence matching algorithms have been proposed for video sequence query. In this paper, we propose an efficient algorithm to extract key frames using color histograms and to match the video sequences using edge features. To effectively match video sequences with low computational load, we make use of the key frames extracted by the cumulative measure and the distance between key frames, and compare two sets of key frames using the modified Hausdorff distance. Experimental results with several real sequences show that the proposed video retrieval algorithm using color and edge features yields the higher accuracy and performance than conventional methods such as histogram difference, Euclidean metric, Battachaya distance, and directed divergence methods.
It is effectively removed noise in the image using FCNN(Fuzzy Cellular Neural Network) applying fuzzy theory to CNN(Cellular Neural Network) structure and HD(Hausdorff Distance) commonly used measures for object matching. HD calculates the distance between two point set of pixels in two-dimensional binary images without establishing correspondence. Also, this method is proposed in order to improve the operation speed. In this paper, $\alpha$-LTSHD(Least Trimmed Square HD) operator applying $\alpha$-Trimmed to LTSHD, one field of HD, is applied to FCNN structure, and it is proposed as the modified method in order to remove noise in the image. Also, it is made a comparison with the other filters by using MSE and SNR after removing noise using the FCNNS which are applied $\alpha$-LTSHD operator through the computer simulation. In a result, FCNN performance which is applied the proposed $\alpha$-LTSHD demonstrated the superiority to the other filters in the noise removal.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.