• Title/Summary/Keyword: Modified Hausdorff Distance

Search Result 17, Processing Time 0.021 seconds

Robust Oriented Hausdorff Measure for 2-D Object Matching (이차원 물체 정합을 위한 Robust Oriented Hausdorff Measure)

  • Sim, Dong-Gyu;Park, Rae-Hong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.60-67
    • /
    • 1999
  • This paper proposes a robust oriented Hausdorff measure (ROHM) for 20D object matching. The ROHM is introduced by replacing the distance concept of the conventional Hausdorff distance (HD) algorithm by the accumulation scheme of the Hough transform (HT). The proposed algorithm can be considered as the modified directed HT using the distance transform (DT). The orientation information at each pixel is also used for removing incorrect correspondences. Experiments with various test images show that the performance of the proposed algorithm is better than that of conventional HD algorithms considered.

  • PDF

Content similarity matching for video sequence identification

  • Kim, Sang-Hyun
    • International Journal of Contents
    • /
    • v.6 no.3
    • /
    • pp.5-9
    • /
    • 2010
  • To manage large database system with video, effective video indexing and retrieval are required. A large number of video retrieval algorithms have been presented for frame-wise user query or video content query, whereas a few video identification algorithms have been proposed for video sequence query. In this paper, we propose an effective video identification algorithm for video sequence query that employs the Cauchy function of histograms between successive frames and the modified Hausdorff distance. To effectively match the video sequences with a low computational load, we make use of the key frames extracted by the cumulative Cauchy function and compare the set of key frames using the modified Hausdorff distance. Experimental results with several color video sequences show that the proposed algorithm for video identification yields remarkably higher performance than conventional algorithms such as Euclidean metric, and directed divergence methods.

Image Based Text Matching Using Local Crowdedness and Hausdorff Distance (지역 밀집도 및 Hausdorff 거리를 이용한 영상기반 텍스트 매칭)

  • Son, Hwa-Jeong;Kim, Ji-Soo;Park, Mi-Seon;Yoo, Jae-Myeong;Kim, Soo-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.134-142
    • /
    • 2006
  • In this paper, we investigate a Hausdorff distance, which is used for the measurement of image similarity, to see whether it is also effective for document retrieval. The proposed method uses a local crowdedness and a Hausdorff distance to locate text images by determining whether a pair of images scanned at different time comes from the same text or not. To reduce the processing time, which is one of the disadvantages of a Hausdorff distance algorithm, we adopt a local crowdedness for feature point extraction. We apply the proposed method to 190 pairs of the same class and 190 pairs of the different class collected from postal envelop images. The results show that the modified Hausdorff distance proposed in this paper performed well in locating the tort region and calculating the degree of similarity between two images. An improvement of accuracy by 2.7% and 9.0% has been obtained, compared to a binary correlation method and the original Hausdorff distance method, respectively.

  • PDF

An Improved Object Detection Method using Hausdorff Distance Modified by Local Pattern Similarity (국지적 패턴 유사도에 의해 수정된 Hausdorff 거리를 이용한 개선된 객체검출)

  • Cho, Kyoung-Sik;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.147-152
    • /
    • 2007
  • Face detection is a crucial part of the face recognition system. It determines the performance of the whole recognition system. Hausdorff distance metric has been used in face detection and recognition with good results. It defines the distance metric based only on the geometric similarity between two sets or points. However, not only the geometry but also the local patterns around the points are available in most cases. In this paper a new Hausdorff distance measure is proposed that makes hybrid use of the similarity of the geometry and the local patterns around the points. Several experiments shows that the new method outperforms the conventional method.

  • PDF

Object Recognition Using Hausdorff Distance and Image Matching Algorithm (Hausdorff Distance와 이미지정합 알고리듬을 이용한 물체인식)

  • Kim, Dong-Gi;Lee, Wan-Jae;Gang, Lee-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.841-849
    • /
    • 2001
  • The pixel information of the object was obtained sequentially and pixels were clustered to a label by the line labeling method. Feature points were determined by finding the slope for edge pixels after selecting the fixed number of edge pixels. The slope was estimated by the least square method to reduce the detection error. Once a matching point was determined by comparing the feature information of the object and the pattern, the parameters for translation, scaling and rotation were obtained by selecting the longer line of the two which passed through the matching point from left and right sides. Finally, modified Hausdorff Distance has been used to identify the similarity between the object and the given pattern. The multi-label method was developed for recognizing the patterns with more than one label, which performs the modified Hausdorff Distance twice. Experiments have been performed to verify the performance of the proposed algorithm and method for simple target image, complex target image, simple pattern, and complex pattern as well as the partially hidden object. It was proved via experiments that the proposed image matching algorithm for recognizing the object had a good performance of matching.

An Efficient Video Retrieval Algorithm Using Key Frame Matching for Video Content Management

  • Kim, Sang Hyun
    • International Journal of Contents
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • To manipulate large video contents, effective video indexing and retrieval are required. A large number of video indexing and retrieval algorithms have been presented for frame-wise user query or video content query whereas a relatively few video sequence matching algorithms have been proposed for video sequence query. In this paper, we propose an efficient algorithm that extracts key frames using color histograms and matches the video sequences using edge features. To effectively match video sequences with a low computational load, we make use of the key frames extracted by the cumulative measure and the distance between key frames, and compare two sets of key frames using the modified Hausdorff distance. Experimental results with real sequence show that the proposed video sequence matching algorithm using edge features yields the higher accuracy and performance than conventional methods such as histogram difference, Euclidean metric, Battachaya distance, and directed divergence methods.

An Efficient Video Retrieval Algorithm Using Luminance Projection

  • Kim, Sang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.891-898
    • /
    • 2004
  • An effective video indexing is required to manipulate large video databases. Most algorithms for video indexing have been commonly used histograms, edges, or motion features. In this paper, we propose an efficient algorithm using the luminance projection for video retrieval. To effectively index the video sequences and to reduce the computational complexity, we use the key frames extracted by the cumulative measure, and compare the set of key frames using the modified Hausdorff distance. Experimental results show that the proposed video indexing and video retrieval algorithm yields the higher accuracy and performance than the conventional algorithm.

  • PDF

A Study on an Open/Closed Eye Detection Algorithm for Drowsy Driver Detection (운전자 졸음 검출을 위한 눈 개폐 검출 알고리즘 연구)

  • Kim, TaeHyeong;Lim, Woong;Sim, Donggyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.67-77
    • /
    • 2016
  • In this paper, we propose an algorithm for open/closed eye detection based on modified Hausdorff distance. The proposed algorithm consists of two parts, face detection and open/closed eye detection parts. To detect faces in an image, MCT (Modified Census Transform) is employed based on characteristics of the local structure which uses relative pixel values in the area with fixed size. Then, the coordinates of eyes are found and open/closed eyes are detected using MHD (Modified Hausdorff Distance) in the detected face region. Firstly, face detection process creates an MCT image in terms of various face images and extract criteria features by PCA(Principle Component Analysis) on offline. After extraction of criteria features, it detects a face region via the process which compares features newly extracted from the input face image and criteria features by using Euclidean distance. Afterward, the process finds out the coordinates of eyes and detects open/closed eye using template matching based on MHD in each eye region. In performance evaluation, the proposed algorithm achieved 94.04% accuracy in average for open/closed eye detection in terms of test video sequences of gray scale with 30FPS/$320{\times}180$ resolution.

An Efficient Video Retrieval Algorithm Using Color and Edge Features

  • Kim Sang-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • To manipulate large video databases, effective video indexing and retrieval are required. A large number of video indexing and retrieval algorithms have been presented for frame-w]so user query or video content query whereas a relatively few video sequence matching algorithms have been proposed for video sequence query. In this paper, we propose an efficient algorithm to extract key frames using color histograms and to match the video sequences using edge features. To effectively match video sequences with low computational load, we make use of the key frames extracted by the cumulative measure and the distance between key frames, and compare two sets of key frames using the modified Hausdorff distance. Experimental results with several real sequences show that the proposed video retrieval algorithm using color and edge features yields the higher accuracy and performance than conventional methods such as histogram difference, Euclidean metric, Battachaya distance, and directed divergence methods.

  • PDF

Study on ${\alpha}-LTS$ Hausdorff distance applying ${\alpha}-trimmed$

  • Byun, Oh-Sung;Beak, Deok-Soo;Moon, Sung-Ryong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.50-53
    • /
    • 2000
  • It is effectively removed noise in the image using FCNN(Fuzzy Cellular Neural Network) applying fuzzy theory to CNN(Cellular Neural Network) structure and HD(Hausdorff Distance) commonly used measures for object matching. HD calculates the distance between two point set of pixels in two-dimensional binary images without establishing correspondence. Also, this method is proposed in order to improve the operation speed. In this paper, $\alpha$-LTSHD(Least Trimmed Square HD) operator applying $\alpha$-Trimmed to LTSHD, one field of HD, is applied to FCNN structure, and it is proposed as the modified method in order to remove noise in the image. Also, it is made a comparison with the other filters by using MSE and SNR after removing noise using the FCNNS which are applied $\alpha$-LTSHD operator through the computer simulation. In a result, FCNN performance which is applied the proposed $\alpha$-LTSHD demonstrated the superiority to the other filters in the noise removal.

  • PDF