• Title/Summary/Keyword: Modified Best Fit Decreasing

검색결과 4건 처리시간 0.023초

Energy and Service Level Agreement Aware Resource Allocation Heuristics for Cloud Data Centers

  • Sutha, K.;Nawaz, G.M.Kadhar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5357-5381
    • /
    • 2018
  • Cloud computing offers a wide range of on-demand resources over the internet. Utility-based resource allocation in cloud data centers significantly increases the number of cloud users. Heavy usage of cloud data center encounters many problems such as sacrificing system performance, increasing operational cost and high-energy consumption. Therefore, the result of the system damages the environment extremely due to heavy carbon (CO2) emission. However, dynamic allocation of energy-efficient resources in cloud data centers overcomes these problems. In this paper, we have proposed Energy and Service Level Agreement (SLA) Aware Resource Allocation Heuristic Algorithms. These algorithms are essential for reducing power consumption and SLA violation without diminishing the performance and Quality-of-Service (QoS) in cloud data centers. Our proposed model is organized as follows: a) SLA violation detection model is used to prevent Virtual Machines (VMs) from overloaded and underloaded host usage; b) for reducing power consumption of VMs, we have introduced Enhanced minPower and maxUtilization (EMPMU) VM migration policy; and c) efficient utilization of cloud resources and VM placement are achieved using SLA-aware Modified Best Fit Decreasing (MBFD) algorithm. We have validated our test results using CloudSim toolkit 3.0.3. Finally, experimental results have shown better resource utilization, reduced energy consumption and SLA violation in heterogeneous dynamic cloud environment.

INNOVATION ALGORITHM IN ARMA PROCESS

  • Sreenivasan, M.;Sumathi, K.
    • Journal of applied mathematics & informatics
    • /
    • 제5권2호
    • /
    • pp.373-382
    • /
    • 1998
  • Most of the works in Time Series Analysis are based on the Auto Regressive Integrated Moving Average (ARIMA) models presented by Box and Jeckins(1976). If the data exhibits no ap-parent deviation from stationarity and if it has rapidly decreasing autocorrelation function then a suitable ARIMA(p,q) model is fit to the given data. Selection of the orders of p and q is one of the crucial steps in Time Series Analysis. Most of the methods to determine p and q are based on the autocorrelation function and partial autocor-relation function as suggested by Box and Jenkins (1976). many new techniques have emerged in the literature and it is found that most of them are over very little use in determining the orders of p and q when both of them are non-zero. The Durbin-Levinson algorithm and Innovation algorithm (Brockwell and Davis 1987) are used as recur-sive methods for computing best linear predictors in an ARMA(p,q)model. These algorithms are modified to yield an effective method for ARMA model identification so that the values of order p and q can be determined from them. The new method is developed and its validity and usefulness is illustrated by many theoretical examples. This method can also be applied to an real world data.

Application of single-step genomic evaluation using social genetic effect model for growth in pig

  • Hong, Joon Ki;Kim, Young Sin;Cho, Kyu Ho;Lee, Deuk Hwan;Min, Ye Jin;Cho, Eun Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1836-1843
    • /
    • 2019
  • Objective: Social genetic effects (SGE) are an important genetic component for growth, group productivity, and welfare in pigs. The present study was conducted to evaluate i) the feasibility of the single-step genomic best linear unbiased prediction (ssGBLUP) approach with the inclusion of SGE in the model in pigs, and ii) the changes in the contribution of heritable SGE to the phenotypic variance with different scaling ${\omega}$ constants for genomic relationships. Methods: The dataset included performance tested growth rate records (average daily gain) from 13,166 and 21,762 pigs Landrace (LR) and Yorkshire (YS), respectively. A total of 1,041 (LR) and 964 (YS) pigs were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel. With the BLUPF90 software package, genetic parameters were estimated using a modified animal model for competitive traits. Giving a fixed weight to pedigree relationships (${\tau}:1$), several weights (${\omega}_{xx}$, 0.1 to 1.0; with a 0.1 interval) were scaled with the genomic relationship for best model fit with Akaike information criterion (AIC). Results: The genetic variances and total heritability estimates ($T^2$) were mostly higher with ssGBLUP than in the pedigree-based analysis. The model AIC value increased with any level of ${\omega}$ other than 0.6 and 0.5 in LR and YS, respectively, indicating the worse fit of those models. The theoretical accuracies of direct and social breeding value were increased by decreasing ${\omega}$ in both breeds, indicating the better accuracy of ${\omega}_{0.1}$ models. Therefore, the optimal values of ${\omega}$ to minimize AIC and to increase theoretical accuracy were 0.6 in LR and 0.5 in YS. Conclusion: In conclusion, single-step ssGBLUP model fitting SGE showed significant improvement in accuracy compared with the pedigree-based analysis method; therefore, it could be implemented in a pig population for genomic selection based on SGE, especially in South Korean populations, with appropriate further adjustment of tuning parameters for relationship matrices.

신차와 중고차간 프로모션의 상호작용에 대한 연구 (A Study on Interactions of Competitive Promotions Between the New and Used Cars)

  • 장광필
    • Asia Marketing Journal
    • /
    • 제14권1호
    • /
    • pp.83-98
    • /
    • 2012
  • 신차와 중고차가 함께 경쟁하는 시장에서 신차의 경쟁만을 모형화한다면 가격이나 기타 프로모션 탄력성의 추정이 왜곡될 수 있다. 그러나 자동차 시장을 연구대상으로 한 선행연구의 대부분이 신차 시장의 경쟁에만 관심을 기울였던 바, 합리적인 가격결정이나 프로모션 기획에 도움을 주기에 미흡한 점이 있었다. 본 연구는 신차의 가격결정 및 프로모션 기획이 향후 중고차 시장을 통해 리바운드되어 신차 매출에 다시 영향을 미친다는 점을 반영하여 모형을 설정하였다. 즉, 서로 다른 신차간의 (혹은 서로 다른 중고차간의) 교차탄력성보다, 동일 모델의 신차와 중고차간의 교차탄력성이 높다는 가정하에 모형을 설정하였다. 방법론적으로는 네스티드 로짓(Nested Logit) 모형을 설정하여 소비자의 자동차 선택은 단계적으로 이루어진다고 가정하였다. 즉, 1단계에서 자동차 모델을 선택하고, 모델이 정해지면 2단계에서 신차와 중고차 중 선택하는 구조를 가정하였다 실증분석은 미국 전역에서 2009년 1월부터 2009년 6월까지 판매된 모든 컴팩트 카 모델 중에서 시장점유율 상위 9개 모델의 신차와 중고차를 대상으로 하였다. 실증분석을 통하여 비교 대상 모형보다 제안된 모형이 모형 적합도 측면에서 우월하고 예측타당성도 높다는 것을 보여주었다. 제안된 모형으로 부터 추정된 모수를 사용하여 몇 가지 시나리오를 상정하여 시뮬레이션을 실시한 결과, 신차(중고차)가 점유율을 높이고자 리베이트를 실시할 경우 중고차(신차)는 현재의 시장점유율을 유지하기 위해 대응 가격할인을 실시하게 되는데 할인 폭은 반대의 경우에 비해 높다는(낮다는)점을 확인하였다. 또한 시뮬레이션 결과가 시사하는 바는 신차와 중고차가 함께 경쟁하는 시장에서 IIA(Independence of Irrelevant Alternatives)모형을 적용할 경우 동일모델의 신차와 중고차간의 교차 탄력성을 과소평가하게 되어 현상유지를 위한 가격할인을 실시할 경우 적정한 수준이하로 하게 된다는 것이다.

  • PDF