• Title/Summary/Keyword: Moderna COVID-19 vaccine

Search Result 3, Processing Time 0.017 seconds

Comparison of COVID-19 Vaccines Introduced in Korea

  • Lee, Chang-Gun;Lee, Dongsup
    • Biomedical Science Letters
    • /
    • v.28 no.2
    • /
    • pp.67-82
    • /
    • 2022
  • The prevalence of SARS-CoV-2 led to inconsistent public health policies that resulted in COVID-19 containment failure. These factors resulted in increased hospitalization and death. To prevent viral spread and achieve herd immunity, the only safe and effective measure is to provide to vaccinates. Ever since the release of the SARS-CoV-2 nucleotide sequence in January of 2020, research centers and pharmaceutical companies from many countries have developed different types of vaccines including mRNA, recombinant protein, and viral vector vaccines. Prior to initiating vaccinations, phase 3 clinical trials are necessary. However, no vaccine has yet to complete a phase 3 clinical trial. Many products obtained "emergency use authorization" from governmental agencies such as WHO, FDA etc. The Korean government authorized the use of five different vaccines. The viral vector vaccine of Oxford/AstraZeneca and the Janssen showed effectiveness of 76% and 66.9%, respectively. The mRNA vaccine of Pfizer-BioNTech and Moderna showed effectiveness of 95% and 94.1%, respectively. The protein recombinant vaccine of Novavax showed an effectiveness of 90.4%. In this review, we compared the characteristics, production platform, synthesis principles, authorization, protective effects, immune responses, clinical trials and adverse effects of five different vaccines currently used in Korea. Through this review, we conceptualize the importance of selecting the optimal vaccine to prevent the COVID-19 pandemic.

Herpes zoster ophthalmicus after COVID-19 vaccine booster in healthy younger adult: a case report

  • Zamrud Wilda Nuril Awaly
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.1
    • /
    • pp.82-84
    • /
    • 2023
  • There were growing reports of herpes zoster reactivation after the coronavirus disease 2019 (COVID-19) vaccination, including a more severe form, herpes zoster ophthalmicus (HZO). A 35-year-old male presented HZO in his left V1 dermatome 10 days after his COVID-19 vaccine booster with Moderna (messenger RNA-1273). He had no history of chronic disease, immunocompromised, autoimmune, malignancy, or long-term immunosuppressive drug use. The rash improved without any further complications after being treated with oral valacyclovir for 7 days. This was a unique case of HZO after the COVID-19 vaccine in a booster setting in healthy younger adults. The association of herpes zoster after a COVID vaccine remained inconclusive and potentially coincidental, especially without the known risk factor. However, we would like to add a report to increase awareness among physicians and the general population, for early recognition and treatment with an antiviral.

COVID-19 vaccine-induced immune thrombotic thrombocytopenia: a review

  • Siti Nur Atikah Aishah Suhaimi;Izzati Abdul Halim Zaki;Zakiah Mohd Noordin;Nur Sabiha Md Hussin;Long Chiau Ming;Hanis Hanum Zulkifly
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.265-290
    • /
    • 2023
  • Rare but serious thrombotic incidents in relation to thrombocytopenia, termed vaccine-induced immune thrombotic thrombocytopenia (VITT), have been observed since the vaccine rollout, particularly among replication-defective adenoviral vector-based severe acute respiratory syndrome coronavirus 2 vaccine recipients. Herein, we comprehensively reviewed and summarized reported studies of VITT following the coronavirus disease 2019 (COVID-19) vaccination to determine its prevalence, clinical characteristics, as well as its management. A literature search up to October 1, 2021 using PubMed and SCOPUS identified a combined total of 720 articles. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guideline, after screening the titles and abstracts based on the eligibility criteria, the remaining 47 full-text articles were assessed for eligibility and 29 studies were included. Findings revealed that VITT cases are strongly related to viral vector-based vaccines, which are the AstraZeneca COVID-19 vaccine (95%) and the Janssen COVID-19 vaccine (4%), with much rarer reports involving messenger RNA-based vaccines such as the Moderna COVID-19 vaccine (0.2%) and the Pfizer COVID-19 vaccine (0.2%). The most severe manifestation of VITT is cerebral venous sinus thrombosis with 317 cases (70.4%) and the earliest primary symptom in the majority of cases is headache. Intravenous immunoglobulin and non-heparin anticoagulant are the main therapeutic options for managing immune responses and thrombosis, respectively. As there is emerging knowledge on and refinement of the published guidelines regarding VITT, this review may assist the medical communities in early VITT recognition, understanding the clinical presentations, diagnostic criteria as well as its management, offering a window of opportunity to VITT patients. Further larger sample size trials could further elucidate the link and safety profile.