• Title/Summary/Keyword: Moderate earthquake

Search Result 197, Processing Time 0.032 seconds

Earthquake Direct Economic Loss Estimation of Building Structures in Gangnam-Gu District in Seoul Using HAZUS Framework (HAZUS틀을 사용한 서울시 강남구의 건축물 지진피해에 따른 직접적 경제손실 예측)

  • Jeong, Gi Hyun;Lee, Han Seon;Kwon, Oh-Sung;Hwang, Kyung Ran
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.391-400
    • /
    • 2016
  • For earthquake loss estimation of building structures in Gangnam-Gu district in Seoul, three scenario earthquakes were selected by comparison of the response spectra of these scenario earthquakes with the design spectrum in Korean Building Code (KBC 2009), and then direct losses of the building structures in the Gangnam-Gu district under each scenario earthquake are estimated. The following conclusions are drawn from the results of damage and loss in the second scenario earthquake, which has a magnitude = 6.5 and epicentral distance =15 km: (1) The ratio of building stocks undergoing the extensive and complete damage level is 40.0% of the total. (2) The amount of direct economic losses appears approximately 19 trillion won, which is 1.2% of the national GDP of Korea. (3) About 25% of high-rise (over 10-story) RC building wall structures, were inflicted with the damage exceeding moderate level, when compared to 60% of low-rise building structures. (4) From the economical view point, the main loss, approximately 50%, was caused by the damage in the high-rise RC wall building structures.

Dynamic Response Analysis of Offshore Guyed Tower Subjected to Strong Earthquake under Moderate Random Waves (지진과 파랑하중을 동시에 받는 해양 가이드 타워의 비정상 동적 응답해석)

  • Ryu, Chung Son;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.65-75
    • /
    • 1993
  • Presented is a method for nonstationary response analysis of an offshore guyed tower subjected to strong earthquake motions under moderate random waves and current loadings. By taking the time varying envelope function and the auto-correlation function of the ground acceleration in terms of complex exponential functions, an analytical procedure is developed for computing time varying variances of the tower response. The stationary responses due to small random waves are obtained by using frequency domain method, and the results are combined with the nonstationary results due to earthquakes. Finally, the expected maximum responses are estimated. Through the example analyses, the nonstationary method developed in this study is verified, and the contributions of the earthquake, wave and current loadings to the total maximum response are investigated.

  • PDF

Experimental assessment of post-earthquake retrofitted reinforced concrete frame partially infilled with fly-ash brick

  • Kumawat, Sanjay R.;Mondal, Goutam;Dash, Suresh R.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.121-135
    • /
    • 2022
  • Many public buildings such as schools, hospitals, etc., where partial infill walls are present in reinforced concrete (RC) structures, have undergone undesirable damage/failure attributed to captive column effect during a moderate to severe earthquake shaking. Often, the situation gets worsened when these RC frames are non-ductile in nature, thus reducing the deformable capability of the frame. Also, in many parts of the Indian subcontinent, it is mandatory to use fly-ash bricks for construction so as to reduce the burden on the disposal of fly-ash produced at thermal power plants. In some scenario, when the non-ductile RC frame, partially infilled by fly-ash bricks, suffers major structural damage, the challenge remains on how to retrofit and restore it. Thus, in this study, two full-scale one-bay, one-story non-ductile RC frame models, namely, bare frame and RC partially infilled frame with fly-ash bricks in 50% of its opening area are considered. In the previous experiments, these models were subjected to slow-cyclic displacement-controlled loading to replicate damage due to a moderate earthquake. Now, in this study these damaged frames were retrofitted and an experimental investigation was performed on the retrofitted specimens to examine the effectiveness of the proposed retrofitting scheme. A hybrid retrofitting technique combining epoxy injection grouting with an innovative and easy-to-implement steel jacketing technique was proposed. This proposed retrofitting method has ensured proper confinement of damaged concrete. The retrofitted models were subjected to the same slow cyclic displacement-controlled loading which was used to damage the frames. The experimental study concluded that the hybrid retrofitting technique was quite effective in enhancing and regaining various seismic performance parameters such as, lateral strength and lateral stiffness of partially fly-ash brick infilled RC frame. Thus, the steel jacketing retrofitting scheme along with the epoxy injection grouting can be relied on for possible repair of the structural members which are damaged due to the captive column effect during the seismic shaking.

Seismic vulnerability assessment of existing private RC constructions in northern Algeria

  • Belhamdi, Nourredine;Kibboua, Abderrahmane;Tahakourt, Abdelkader
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.25-38
    • /
    • 2022
  • The RC private constructions represent a large part of the housing stock in the north part of Algeria. For various reasons, they are mostly built without any seismic considerations and their seismic vulnerability remains unknown for different levels of seismic intensity possible in the region. To support future seismic risk mitigation efforts in northern Algeria, this document assesses the seismic vulnerability of typical private RC constructions built after the Boumerdes earthquake (May 21, 2003) without considering existing seismic regulation, through the development of analytical fragility curves. The fragility curves are developed for four representative RC frames in terms of slight, moderate, extensive, and complete damage states suggested in HAZUS-MH 2.1, using nonlinear time history analyses. The numerical simulation of the nonlinear seismic response of the structures is performed using the SeismoStruct software. An original intensity measure (IM) is proposed and used in this study. It is the zone acceleration coefficient "A", through which the seismic hazard level is represented in the Algerian Seismic Regulations. The efficiency, practicality, and proficiency of the choice of IM are demonstrated. Incremental dynamic analyses are conducted under fifteen ground motion accelerograms compatible with the elastic target spectrum of the Algerian Seismic Regulations. In order to cover all the seismic zones of northern Algeria, the accelerograms are scaled from 0.1 to 2.5 in increments of 0.1. The results mainly indicate that private constructions built after the Boumerdes earthquake in the moderate and high seismic zones with four (04) or more storeys are highly vulnerable.

Elastic Seismic Design of Steel Highrise Buildings in Regions of Moderate Seismicity (중진대 철골조 초고층 건물의 탄성내진설계)

  • Lee, Cheol Ho;Kim, Seon Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.553-562
    • /
    • 2006
  • Lateral loading due to wind or earthquake is a major factor that affects the design of high-rise buildings. This paper highlights the problems associated with the seismic design of high-rise buildings in regions of strong wind and moderate seismicity. Seismic response analysis and performance evaluation were conducted for wind-designed concentrically braced steel high-rise buildings in order to check the feasibility of designing them per elastic seismic design criterion (or strength and stiffness solution) in such regions. Review of wind design and pushover analysis results indicated that wind-designed high-rise buildings possess significantly increased elastic seismic capacity due to the overstrength resulting from the wind serviceability criterion. The strength demand-to-capacity study showed that, due to the wind design overstrength, high-rise buildings with a slenderness ratio of larger than four or five can elastically withstand even the maximum considered earthquake (MCE) with the seismic performance level of immediate occupancy under the limited conditions of this study. A step-by-step seismic design procedure per the elastic criterion that is directly usable for practicing design engineers is also recommended.

Protocol for testing of cold-formed steel wall in regions of low-moderate seismicity

  • Shahi, Rojit;Lam, Nelson;Gad, Emad;Wilson, John
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.629-647
    • /
    • 2013
  • Loading protocols have been developed for quasi-static cyclic testing of structures and components. However, it is uncertain if protocols developed for conditions of intense ground shaking in regions of high seismicity would also be applicable to regions of low-moderate seismicity that are remote from the tectonic plate boundaries. This study presents a methodology for developing a quasi-static cyclic displacement loading protocol for experimental bracing evaluation of cold-formed steel stud shear walls. Simulations presented in the paper were based on conditions of moderate ground shaking (in Australia). The methodologies presented are generic in nature and can be applied to other regions of similar seismicity conditions (which include many parts of China, Korea, India and Malaysia). Numerous response time histories including both linear and nonlinear analyses have been generated for selected earthquake scenarios and site classes. Rain-flow cycle counting method has been used for determining the number of cycles at various ranges of normalized displacement amplitude. It is found that the number of displacement cycles of the loading protocol increases with increasing intensity of ground shaking (associated with a longer return period).

A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea (우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석)

  • Kim, Jung Han;Kim, Jae Kwan;Heo, Tae Min;Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.

Characteristics of the Point-source Spectral Model for Odaesan Earthquake (M=4.8, '07. 1. 20) (오대산지진(M=4.8, '07. 1. 20)의 점지진원 스펙트럼 모델 특성)

  • Yun, Kwan-Hee;Park, Dong-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.241-251
    • /
    • 2007
  • The observed spectra from Odaesan earthquake were fitted to a point-source spectral model to evaluate the source spectrum and spatial features of the modelling error. The source spectrum was calculated by removing from the observed spectra the path and site dependent responses (Yun, 2007) that were previously revealed through an inversion process applied to a large accumulated spectral dataset. The stress drop parameter of one-corner Brune's ${\omega}^2$ source model fitted to the estimated source spectrum was well predicted by the scaling relation between magnitude and stress drop developed by Yun et al. (2006). In particular, the estimated spectrum was quite comparable to the two-corner source model that was empirically developed for recent moderate earthquakes occurring around the Korean Peninsula, which indicates that Odaesan earthquake is one of typical moderate earthquakes representative of Korean Peninsula. Other features of the observed spectra from Odaesan earthquake were also evaluated based on the commonly treated random error between the observed data and the estimated point-source spectral model. Radiation pattern of the error according to azimuth angle was found to be similar to the theoretical estimate. It was also observed that the spatial distribution of the errors was correlated with the geological map and the $Q_0$ map which are indicatives of seismic boundaries.

Comparative Analysis of Structural Damage Potentials Observed in the 9.12 Gyeongju and 11.15 Pohang Earthquakes (9.12 경주지진 및 11.15 포항지진의 구조손상 포텐셜 비교연구)

  • Lee, Cheol-Ho;Kim, Sung-Yong;Park, Ji-Hun;Kim, Dong-Kwan;Kim, Tae-Jin;Park, Kyoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.175-184
    • /
    • 2018
  • In this paper, comparative analysis of the 9.12 Gyeongju and 11.15 Pohang earthquakes was conducted in order to provide probable explanations and reasons for the damage observed in the 11.15 Pohang earthquake from both earthquake and structural engineering perspectives. The damage potentials like Arias intensity, effective peak ground acceleration, etc observed in the 11.15 Pohang earthquake were generally weaker than those of the 9.12 Gyeongju earthquake. However, in contrast to the high-frequency dominant nature of the 9.12 Gyeongju earthquake records, the spectral power of PHA2 record observed in the soft soil site was highly concentrated around 2Hz. The base shear around 2 Hz frequency was as high as 40% building weight. This frequency band is very close to the fundamental frequency of the piloti-type buildings severely damaged in the northern part of Pohang. Unfortunately, in addition to inherent vertical irregularity, most of the damaged piloti-type buildings had plan irregularity as well and were non-seismic. All these contributed to the fatal damage. Inelastic dynamic analysis indicated that PHA2 record demands system ductility capacity of 3.5 for a structure with a fundamental period of 0.5 sec and yield base shear strength of 10% building weight. The system ductility level of 3.5 seems very difficult to be achievable in non-seismic brittle piloti-type buildings. The soil profile of the PHA2 site was inversely estimated based on deconvolution technique and trial-error procedure with utilizing available records measured at several rock sites during the 11.15 Pohang earthquake. The soil profile estimated was very typical of soil class D, implying significant soil amplification in the 11.15 Pohang earthquake. The 11.15 Pohang earthquake gave us the expensive lesson that near-collapse damage to irregular and brittle buildings is highly possible when soil is soft and epicenter is close, although the earthquake magnitude is just minor to moderate (M 5+).

Analysis of Korean Citizens' Preparedness for Earthquake Hazards (지진 재해에 대한 시민들의 준비도 분석)

  • Lee, Kiyoung;Ha, Minsu;Han, Ju;Lee, Changwook
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.199-209
    • /
    • 2022
  • In this study, we analyzed the preparedness of Korean citizens for earthquake hazards. For this purpose, we developed a questionnaire on the preparedness of citizens for earthquake hazards, consisting of three constructs (knowledge, awareness, and management). A total of 1,256 citizen responses were collected through probability proportionate-to-size sampling and then subjected to Rasch analysis, inferential statistical analysis, and cluster analysis. The findings are as follows. First, questionnaire analysis showed that overall, the earthquake preparedness of citizens was 'normal', with a lower management score than knowledge and awareness scores. Second, analysis of variables related to preparedness for earthquake hazards, gender, education level, actual distance, and safety awareness were found to influence preparedness for earthquake hazards. Third, correlation analysis revealed a high correlation between the three constructs of preparedness for earthquake hazards, namely knowledge, awareness, and management, indicating a structurally close relationship with each other. In addition, even if gender and education level differed, these structural correlations were similar. Through cluster analysis, the citizens were further divided into five groups; the group with moderate levels of the three constructs accounted for the majority of citizens. Considering these findings, we propose an educational orientation that fosters the preparedness of citizens for earthquake hazards.