• Title/Summary/Keyword: Models-3/CMAQ

Search Result 21, Processing Time 0.036 seconds

Numerical Study on the Process Analysis of Ozone Production due to Emissions Reduction over the Seoul Metropolitan Area (수도권 배출량 저감에 따른 오존 발생 과정 분석에 관한 수치연구)

  • Jeong, Yeo-Min;Lee, Soon-Hwan;Lee, Hwa-Woon;Jeon, Won-Bae
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.339-349
    • /
    • 2012
  • In order to clarify the impact of emissions reductions on the air quality over Metropolitan area of Korean Peninsula, several numerical experiment and analysis of integrated process rate(IPR) of ozone were carried out. Numerical models used in this study are WRF for the estimate the meteorological elements and CMAQ for assessment of ozone concentration. As result in the sensitive test of VOC/NOx reduction experiments, although VOC reduction tends to induce the different impact on the advection and photochemical reaction rate of ozone in urban area and rural area, the mechanism of ozone appeared to be more sensitive to the reduction of VOC than that of NOx over the metropolitan and its surround area. So the control of VOC emission inventories is an effective means to decrease the ozone concentrations around this area.

Photochemical Modeling for the Ozone Episode on Summer in Metropolitan Area (하계 광화학모델을 이용한 수도권지역의 고농도 오존 사례 모사)

  • 이종범;장명도
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.143-144
    • /
    • 2003
  • 최근 서울을 포함한 수도권지역은 물론 그 지역의 풍하지역에서 조차도 오존오염이 지속적으로 악화되고 있는 실정이다. 이에 대해 보다 정확한 원인 규명 및 그에 따른 대책 수립을 위하여 많은 연구가 진행되고 있다. 광화학모델링은 오존오염의 원인 규명 및 대책수립을 위해 정확도 향상이 요구된다. 본 연구에서는 광화학모델인 MODELS-3/CMAQ(1999)을 적용하여 수도권지역에서 빈번히 발생하는 2002년 하계 오존 고농도 현상을 모사하였다. (중략)

  • PDF

Photochemical Modeling for the Ozone Episode in Metropolitan Area (광화학모델을 이용한 수도권지역의 고농도 및 저농도 오존 사례 모사)

  • 이종범;장명도
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.299-300
    • /
    • 2003
  • 지난해 수도권에서 월드컵경기가 진행되었던 2002년 6월 6일에 구리 수택동 지점에서 203ppb에 이르는 고농도 오존이 발생하였다. 이때의 기상상태는 바람이 약하고 일사량이 강하고 운량이 적는 둥 고농도 오존의 좋은 조건이었다. 반면 2002년 7월 27일은 6월의 경우와 마찬가지로 기상조건은 고농도 오존생성의 호조건이었으나 수도권 67개 지점의 오존 평균 농도가 30ppb이하의 낮은 농도를 나타내었다. 본 연구에서는 광화학모델인 Models-3/CMAQ을 이용하여 이러한 2가지 오존 사례를 모사하고 특징을 비교 고찰하고자 한다. (중략)

  • PDF

The Air Quality Modeling According to the Emission Scenarios on Complex Area (복잡지형에서의 배출량 시나리오에 따른 대기질 수치모의)

  • Lee, Hwa-Woon;Choi, Hyun-Jung;Lee, Soon-Hwan;Lim, Heon-Ho;Lee, Kang-Yoel;Sung, Kyoung-Hee;Jung, Woo-Sik;Park, Jeong-Im;Moon, Nan-Kyung
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.921-928
    • /
    • 2007
  • The objective of this work is the air quality modeling according to the scenarios of emission on complex terrain. The prognostic meteorological fields and air quality field over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model (MM5) and the Third Generation Community Multi-scale Air Quality Modeling System (Models - 3/CMAQ), respectively. The emission source was driven from the Clean Air Policy Support System of the Korea National institute of Environmental Research (CAPSS), which is a 1 km x 1 km grid in South Korea during 2003. In comparison of air quality fields, the simulated averaged $PM_{10},\;NO_2,\;and\;O_3$ concentration on complex terrain in control case were decreased as compared with base case. Particularly $PM_{10}$ revealed most substantial localized differences by $(18{\sim}24{\mu}g/m^3)$. The reduction rate of $PM_{10},\;NO_2,\;and\;O_3$ is respectively 18.88, 13.34 and 4.17%.

Air Quality Modeling of Ozone Concentration According to the Roughness Length on the Complex Terrain (복잡지형에서의 지표면 거칠기에 따른 오존 농도 수치모의)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Sung, Kyoung-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.430-439
    • /
    • 2007
  • The objective of this work is the air quality modeling according to the practical roughness length using the building information as surface boundary conditions. As accurate wind and temperature field are required to produce realistic urban air quality modeling, comparative simulations by various roughness length are discussed. The prognostic meteorological fields and air quality field over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model (MM5) and the Third Generation Community Multi-scale Air Quality Modeling System (Models-3/CMAQ), respectively. The simulated $O_3$ concentration on complex terrain and their interactions with the weak synoptic flow had relatively strong effects by the roughness length. A comparison of the three meteorological fields of respective roughness length reveals substantial localized differences in surface temperature and wind folds. Under these conditions, the ascended mixing height and weakened wind speed at night which induced the stable boundary stronger, and the difference of simulated $O_3$ concentration is $2{\sim}6\;ppb$.

Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008

  • Ghim, Young Sung;Oh, Hyun Sun;Kim, Jin Young;Woo, Jung-Hun;Chang, Young-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.146-155
    • /
    • 2016
  • Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of $66ng/m^2-day$ was about twice as large as the dry deposition flux of $32ng/m^2-day$, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder.

Evaluation of Ensemble Approach for O3 and PM2.5 Simulation

  • Morino, Yu;Chatani, Satoru;Hayami, Hiroshi;Sasaki, Kansuke;Mori, Yasuaki;Morikawa, Tazuko;Ohara, Toshimasa;Hasegawa, Shuichi;Kobayashi, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.150-156
    • /
    • 2010
  • Inter-comparison of chemical transport models (CTMs) was conducted among four modeling research groups. Model performance of the ensemble approach to $O_3$ and $PM_{2.5}$ simulation was evaluated by using observational data with a time resolution of 1 or 6 hours at four sites in the Kanto area, Japan, in summer 2007. All groups applied the Community Multiscale Air Quality model. The ensemble average of the four CTMs reproduced well the temporal variation of $O_3$ (r=0.65-0.85) and the daily maximum $O_3$ concentration within a factor of 1.3. By contrast, it underestimated $PM_{2.5}$ concentrations by a factor of 1.4-2, and did not reproduce the $PM_{2.5}$ temporal variation at two suburban sites (r=~0.2). The ensemble average improved the simulation of ${SO_4}^{2-}$, ${NO_3}^-$, and ${NH_4}^+$, whose production pathways are well known. In particular, the ensemble approach effectively simulated ${NO_3}^-$, despite the large variability among CTMs (up to a factor of 10). However, the ensemble average did not improve the simulation of organic aerosols (OAs), underestimating their concentrations by a factor of 5. The contribution of OAs to $PM_{2.5}$ (36-39%) was large, so improvement of the OA simulation model is essential to improve the $PM_{2.5}$ simulation.

Analysis of PM2.5 Concentration and Contribution Characteristics in South Korea according to Seasonal Weather Patternsin East Asia: Focusing on the Intensive Measurement Periodsin 2015 (동아시아 지역의 계절별 기상패턴에 따른 우리나라 PM2.5 농도 및 기여도 특성 분석: 2015년 집중측정 기간을 중심으로)

  • Nam, Ki-Pyo;Lee, Dae-Gyun;Jang, Lim-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.183-200
    • /
    • 2019
  • In this study, the characteristics of seasonal $PM_{2.5}$ behavior in South Korea and other Northeast Asian regions were analyzed by using the $PM_{2.5}$ ground measurement data, weather data, WRF and CMAQ models. Analysis of seasonal $PM_{2.5}$ behavior in Northeast Asia showed that $PM_{2.5}$ concentration at 6 IMS sites in South Korea was increased by long-distance transport and atmospheric congestion, or decreased by clean air inflow due to seasonal weather characteristics. As a result of analysis by applying BFM to air quality model, the contribution from foreign countries dominantly influenced the $PM_{2.5}$ concentrations of Baengnyeongdo due to the low self-emission and geographical location. In the case of urban areas with high self-emissions such as Seoul and Ulsan, the $PM_{2.5}$ contribution from overseas was relatively low compared to other regions, but the standard deviation of the season was relatively high. This study is expected to improve the understanding of the air pollutant phenomenon by analyzing the characteristics of $PM_{2.5}$ behavior in Northeast Asia according to the seasonal weather condition change. At the same time, this study can be used to establish the air quality policy in the future, knowing that the contribution of $PM_{2.5}$ concentration to the domestic and overseas can be different depending on the regional emission characteristics.

Study on the Effects of Future Urban Growth on Surface Ozone Concentrations in the Seoul Metropolitan Region (수도권 미래 도시성장이 오존농도 변화에 미치는 영향 연구)

  • Seok, Hyeon-Bae;Jeong, Ju-Hee;Kang, Yoon-Hee;Kim, Hyunsu;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.31-46
    • /
    • 2015
  • In this study, the regional climate (WRF) and air quality (CMAQ) models were used to simulate the effects of future urban growth on surface ozone concentrations in the Seoul metropolitan region (SMR). These analyses were performed based on changes in ozone concentrations during ozone seasons (May-June) for the year 2050 (future) relative to 2012 (present) by urban growth. The results were compared with the impacts of RCP scenarios on ozone concentrations in the SMR. The fractions of urban in the SMR (25.8 %) for the 2050 were much higher than those (13.9 %) for the 2012 and the future emissions (e.g., CO, NO, $NO_2$, $SO_2$, VOC) were increased from 121 % (NO) to 161.3 % ($NO_2$) depending on emission material. The mean and daily maximum 1-h ozone in the SMR increased about 3 - 7 ppb by the effect the RCP scenarios. However, the effect of urban growth reduced the mean ozone by 3 ppb in the SMR and increased the daily maximum 1-h ozone by 2 - 5 ppb over the northeastern SMR and around the coastline. In particular, the ozone pollution days exceeding the 1-h regulatory standard (100 ppb) were far more affected by urban growth than mean values. As a result, the average number of days exceeding the 1-h regulatory standard increased up to 10 times.