• Title/Summary/Keyword: Modeling of Organic Matter and Trophic State

Search Result 2, Processing Time 0.017 seconds

Multidimensional Dynamic Water Quality Modeling of Organic Matter and Trophic State in the Han River System (한강수계에서의 다차원 시변화 유기물 및 영양상태 모델 연구)

  • Kim, Eun-Jung;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.151-164
    • /
    • 2013
  • Multidimensional dynamic water quality model of organic matter and trophic state was applied to the Han River system. The model was calibrated using field measurement data obtained during the year of 2007. The model results showed reasonable performance in predicting temporal variations of TN, TP, Chl-a and BOD concentrations. The applied integrated modeling system can be effectively used to simulate water quality as well as hydrodynamic and water temperature for river-lake continuous system in the Han River. Utilizing the calibrated model, we analyzed the spatial and temporal distributions of TN, TP, Chl-a and BOD concentrations in the Han River system. The temporal variations of water quality at each river reach and lake were effectively simulated with the developed model and spatial distribution of water qualities in the Han River system could be compared. The multidimensional dynamic modeling system can simulate the water qualities of entire waterbody where Lake Paldang and the incoming flows are included using single modeling system. So it can be effectively used for integrated water quality management of the Han River system.

Ecosystem Health Diagnosis Using Integrative Multiple Eco-metric Model Approaches

  • Kim, Hyun-Mac;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • The object of this study was to evaluate lotic ecosystem health using multiple eco-metric approaches such as water chemistry diagnosis, physical habitat health evaluations, and biological integrity modeling at 100 streams of four major watersheds. For the study, eight chemical water quality parameters such as nutrients (N, P) and organic material were measured and 11-metric models of Qualitative Habitat Evaluation Index (QHEI) and multiple eco-metric health assessment model (MEHA) were applied to the four major watershed. Nutrient analysis of nitrogen (N) and phosphorus (P) in all watersheds indicated a eutrophic state depending on the locations of sampling streams. Physical habitat health, based on the QHEI model, averaged 114 (range: 56 - 194), judging as a "good condition" by the criteria of Plafkin et al. (1989). In addition, primary (H1 - H4), secondary (H5 - H7), and tertiary habitat metric variables (H8 - H11) were analyzed in relation to the physical habitat degradations. The plots of tolerant species ($P_{TS}$) and sensitive species ($P_{SS}$) to water quality showed that the proportions of $P_{TS}$ had positive linear functions with nutrients, and that the $P_{SS}$ had inverse linear relations with the chemical variables. The model of eco-metric health assessment showed that mean MEHA was 20.4, indicating a fair condition. Overall, our data suggest that water chemistry, based on nutrients and organic matter, directly modified the trophic structures in relation to food chain in the aquatic ecosystems, and then these directly influenced the compositions of tolerance/sensitive species, resulting in degradations of overall ecological health.