• 제목/요약/키워드: Modeling and simulation technique

검색결과 585건 처리시간 0.027초

Modeling concrete fracturing using a hybrid finite-discrete element method

  • Elmo, Davide;Mitelman, Amichai
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.297-304
    • /
    • 2021
  • The hybrid Finite-Discrete Element (FDEM) approach combines aspects of both finite elements and discrete elements with fracture mechanics principles, and therefore it is well suited for realistic simulation of quasi-brittle materials. Notwithstanding, in the literature its application for the analysis of concrete is rather limited. In this paper, the proprietary FDEM code ELFEN is used to model concrete specimens under uniaxial compression and indirect tension (Brazilian tests) of different sizes. The results show that phenomena such as size effect and influence of strain-rate are captured using this modeling technique. In addition, a preliminary model of a slab subjected to dynamic shear punching due to progressive collapse is presented. The resulting fracturing pattern of the impacted slab is similar to observations from actual collapse.

직렬-병렬 공진 무선전력전송 시스템의 동기 좌표계 모델 (DQ Synchronous Reference Frame Model of a Series-Parallel Tuned Inductive Power Transfer System)

  • 노은총;이상민;이승환
    • 전력전자학회논문지
    • /
    • 제25권6호
    • /
    • pp.477-483
    • /
    • 2020
  • This study proposes a DQ synchronous reference frame model of a series-parallel tuned inductive power transfer (SP-IPT) system. The wireless power transmission system experiences control difficulty because the transmitter-side controller cannot directly measure the receiver-side load voltages and currents. Therefore, a control-oriented circuit model that shows the dynamics of the IPT system is required to achieve a well-behaved controller. In this study, an equivalent circuit model of the SP-IPT system in a synchronously rotating reference frame is proposed using the single-phase DQ transformation technique. The proposed circuit model is helpful in modeling the dynamics of the voltages and currents of the transmitter- and receiver-side resonant tanks and loads. The proposed circuit model is evaluated using frequency- and time-domain simulation results.

상용차량용 판스프링의 이력특성 구현 (Hysteretic Characteristics of Leaf Springs in Commercial Vehicles)

  • 문원기;송철기
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.99-105
    • /
    • 2008
  • Multi-leaf springs are widely used for a major suspension component in many commercial vehicles. The modeling technique of multi-leaf springs is one of the most difficult problems in suspension modeling as the elements have complicated nonlinear characteristics such as a hysteresis behavior due to the friction. In this paper, hysteretic characteristics with the static and dynamic test are modeled and are simulated with three links and joints in MSC.ADAMS. Simulation results showed good agreements with test results. Using this methodology, it is expected that dynamic characteristics of suspension system with multi-leaf spring can be more accurately evaluated in vehicle dynamics.

Multi-level structural modeling of an offshore wind turbine

  • Petrini, Francesco;Gkoumas, Konstantinos;Zhou, Wensong;Li, Hui
    • Ocean Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.1-16
    • /
    • 2012
  • Offshore wind turbines are complex structural and mechanical systems located in a highly demanding environment. This paper proposes a multi-level system approach for studying the structural behavior of the support structure of an offshore wind turbine. In accordance with this approach, a proper numerical modeling requires the adoption of a suitable technique in order to organize the qualitative and quantitative assessment in various sub-problems, which can be solved by means of sub-models at different levels of detail, both for the structural behavior and for the simulation of loads. Consequently, in a first place, the effects on the structural response induced by the uncertainty of the parameters used to describe the environmental actions and the finite element model of the structure are inquired. After that, a meso-level FEM model of the blade is adopted in order to obtain the detailed load stress on the blade/hub connection.

계층적 모델링에 의한 두 팔 로봇의 상호충돌방지 실시간 경로제어 (Hierarchical Model-based Real-Time Collision-Free Trajectory Control for a Cual Arm Rrobot System)

  • 이지홍;원경태
    • 제어로봇시스템학회논문지
    • /
    • 제3권5호
    • /
    • pp.461-468
    • /
    • 1997
  • A real-time collision-free trajectory control method for dual arm robot system is proposed. The proposed method is composed of two stages; one is to calculate the minimum distance between two robot arms and the other is to control the trajectories of the robots to ensure collision-free motions. The calculation of minimum distance between two robots is, also, composed of two steps. To reduce the calculation time, we, first, apply a simple modeling technique to the robots arms and determine the interested part of the robot arms. Next, we apply more precise modeling techniques for the part to calculate the minimum distance. Simulation results show that the whole algorithm runs within 0.05 second using Pentium 100MHz PC.

  • PDF

1-D 모델링을 통한 터보펌프식 액체로켓 엔진의 동적 특성 해석 (One Dimensional Analysis for Dynamic Characteristics of Turbopump-fed Liquid Rocket Engine)

  • 손민;구자예
    • 항공우주시스템공학회지
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2010
  • As the rocket KSLV-1 called NARO was launched lately, development of domestic rocket technology has been accelerated elastically. Since the rocket technology needs a lot of empirical data, a variety of experiments should be done and lots of time have to be spent for accumulating the foundation of technology. However using a computer can be the solution to close a gap of technique because the simulation can be executed in short time against real experiments and calculate a multiplicity of cases easily. In this research, the transient analysis of turbopump-fed liquid rocket system was worked by the one dimensional modeling. The rocket system consists of the modulized components that are engine, turbopump and so on. For 70 ton class system, the rocket transient process of starting was studied and the performance analysis in steady condition was achieved. In addition, the estimation of nozzle internal flow was investigated by using a nozzle coefficient.

  • PDF

HIERARCHICAL STILL IMAGE CODING USING MODIFIED GOLOMB-RICE CODE FOR MEDICAL IMAGE INFORMATION SYSTEM

  • Masayuki Hashimoto;Atsushi Koike;Shuichi Matsumoto
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1999년도 KOBA 방송기술 워크샵 KOBA Broadcasting Technology Workshop
    • /
    • pp.97.1-102
    • /
    • 1999
  • This paper porposes and efficient coding scheme for remote medical communication systems, or“telemedicine systems”. These systems require a technique which is able to transfer large volume of data such as X-ray images effectively. We have already developed a hierarchical image coding and transmission scheme (HITS), which achieves an efficient transmission of medical images simply[1]. In this paper, a new coding scheme for HITS is proposed, which used hierarchical context modeling for the purpose of improving the coding efficiency. The hierarchical context modeling divides wavelet coefficients into several sets by the value of a correspondent coefficient in their higher class, or“a parent”, optimizes a Golomb-Rice (GR) code parameter in each set, and then encodes the coefficients with the parameter. Computer simulation shows that the proposed scheme is effective with simple implementation. This is due to fact that a wavelet coefficient has dependence on its parent. As a result, high speed data transmission is achieved even if the telemedicine system consists of simple personal computers.

Impedance-Based Stability Analysis of DC-DC Boost Converters Using Harmonic State Space Model

  • Park, Bumsu;Heryanto, Nur A.;Lee, Dong-Choon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.255-261
    • /
    • 2021
  • This paper proposes impedance-based stability analysis of DC-DC boost converters, where a harmonic state space (HSS) modeling technique is used. At first, the HSS model of the boost converter is developed. Then, the closed-loop output impedance of the converter is derived in frequency domain using small signal modeling including frequency couplings, where harmonic transfer function (HTF) matrices of the open-loop output impedance, the duty-to-output, and the voltage controller are involved. The frequency response of the output impedance reveals a resonance frequency at low frequency region and frequency couplings at sidebands of switching frequency which agree with the simulation and experimental result.

SVDD기법을 이용한 하이브리드 전기자동차 충-방전시스템의 고장검출 알고리듬 (Fault Detection Algorithm of Charge-discharge System of Hybrid Electric Vehicle Using SVDD)

  • 나상건;양인범;허훈
    • 한국소음진동공학회논문집
    • /
    • 제21권11호
    • /
    • pp.997-1004
    • /
    • 2011
  • A fault detection algorithm of a charge and discharge system to ensure the safe use of hybrid electric vehicle is proposed in this paper. This algorithm can be used as a complementary way to existing fault detection technique for a charge and discharge system. The proposed algorithm uses a SVDD technique, which additionally utilizes two methods for learning a large amount of data; one is to incrementally learn a large amount of data, the other one is to remove the data that does not affect the next learning using a new data reduction technique. Removal of data is selected by using lines connecting support vectors. In the proposed method, the data processing speed is drastically improved and the storage space used is remarkably reduced than the conventional methods using the SVDD technique only. A battery data and speed data of a commercial hybrid electrical vehicle are utilized in this study. A fault boundary is produced via SVDD techniques using the input and output in normal operation of the system without using mathematical modeling. A fault detection simulation is performed using both an artificial fault data and the obtained fault boundary via SVDD techniques. In the fault detection simulation, fault detection time via proposed algorithm is compared with that of the peak-peak method. Also the proposed algorithm is revealed to detect fault in the region where conventional peak-peak method is never able to do.

현가장치의 성능향상을 위한 지능형 제어로직에 관한 연구 (A Study on the Knowledge Based Control Algorithm for Performance Improvement of the Automotive Suspension System)

  • 소상균;변기식
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.87-92
    • /
    • 2001
  • Automotive suspension system is a mechanism for isolation of the vibration coming from the road inputs. Recently, the electronically controlled suspension systems which may improve ride and handling performance have been developed. Here, the continuously controlled semi-active suspension system is focused. As a mechanism to control damping forces continuously, a solenoid valve is used. The modeling for the solenoid valve is introduced briefly, a vehicle dynamics modeling is constructed, and then combined system model is completed. To design the efficient control algorithm for the semiactive suspension system the knowledge based fuzzy logic is applied and the technique how to apply the sky-hook theory to the fuzzy logic is developed. Finally, to confirm the improvement of performance the computer simulation is carried out.

  • PDF