• Title/Summary/Keyword: Modeling Techniques

Search Result 1,700, Processing Time 0.027 seconds

A novel approach in analyzing agriculture and food systems: Review of modeling and its applications

  • Kim, Do-Gyun;Cho, Byoung-Kwan;Lee, Wang-Hee
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.163-175
    • /
    • 2016
  • For the past decades, advances in computational devices have propelled mathematical modeling to become an effective tool for solving the black box of complex biological systems because of its prominent analytical power and comprehensive insight. Nevertheless, modeling is still limitedly used in the fields of agriculture and food which generally concentrate on producing experimental data rather than processing them. This study, hence, intends to introduce modeling in terms of its procedure types of structure, formulation, analyses, and software, with reviews of current notable studies from micro to macro scales so as to propose the modeling technique as a novel approach in discerning conundrums in agriculture and food systems. We expect this review to provide an eligible source for researchers who are willing to apply modeling techniques into the unexplored fields related to bio-systems that comprehensively include biology, nutrition, agriculture, food, animal science, and ecology.

Vibration control laws via shunted piezoelectric transducers: A review

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chen, JinJin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Attaching a piezoelectric transducer to a vibrating structure, and shunting it with an electric circuit, gives rise to different passive, semi-passive, and semi-active control techniques. This paper attempts to review the research related to structural vibration control, via passive, semi-passive, and semi-active control methods. First, the existing electromechanical modeling is reviewed, along with the modeling methods. These range from lumped parameters, to distributed parameters modeling of piezostructural systems shunted by electrical networks. Vibration control laws are then discussed, covering passive, semi-passive, and semi-active control techniques, which are classified according to whether external power is supplied to the piezoelectric transducers, or not. Emphasis is placed on recent articles covering semi-passive and semi-active control techniques, based upon switched shunt circuits. This review provides the necessary background material for researchers interested in the growing field of vibration damping and control, via shunted piezostructural systems.

Multicracks identification in beams based on moving harmonic excitation

  • Chouiyakh, Hajar;Azrar, Lahcen;Alnefaie, Khaled;Akourri, Omar
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1087-1107
    • /
    • 2016
  • A method of damage detection based on the moving harmonic excitation and continuous wavelet transforms is presented. The applied excitation is used as a moving actuator and its frequency and speed parameters can be adjusted for an amplified response. The continuous wavelet transforms, CWT, is used for cracks detection based on the resulting amplified signal. It is demonstrated that this identification procedure is largely better than the classical ones based on eigenfrequencies or on the eigenmodes wavelet transformed. For vibration responses, free and forced vibration analyses of multi-cracked beams are investigated based on both analytical and numerical methodological approaches. Cracks are modeled through rotational springs whose compliances are evaluated using linear elastic fracture mechanics. Based on the obtained forced responses, multi-cracks positions are accurately identified and the CWT identification can be highly improved by adjusting the frequency and the speed excitation parameters.

Machine learning modeling of irradiation embrittlement in low alloy steel of nuclear power plants

  • Lee, Gyeong-Geun;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4022-4032
    • /
    • 2021
  • In this study, machine learning (ML) techniques were used to model surveillance test data of nuclear power plants from an international database of the ASTM E10.02 committee. Regression modeling was conducted using various techniques, including Cubist, XGBoost, and a support vector machine. The root mean square deviation of each ML model for the baseline dataset was less than that of the ASTM E900-15 nonlinear regression model. With respect to the interpolation, the ML methods provided excellent predictions with relatively few computations when applied to the given data range. The effect of the explanatory variables on the transition temperature shift (TTS) for the ML methods was analyzed, and the trends were slightly different from those for the ASTM E900-15 model. ML methods showed some weakness in the extrapolation of the fluence in comparison to the ASTM E900-15, while the Cubist method achieved an extrapolation to a certain extent. To achieve a more reliable prediction of the TTS, it was confirmed that advanced techniques should be considered for extrapolation when applying ML modeling.

An Object-Oriented Model Base Design Using an Object Modeling Techniques (객체모델링기법에 의한 객체지향 모델베이스 설계)

  • Jeong Dae-Yul
    • Management & Information Systems Review
    • /
    • v.1
    • /
    • pp.229-268
    • /
    • 1997
  • Recently, object-oriented concepts and technology are on the leading edge of programming language and database systems research, and their usefulness in those contexts has been successfully demonstrated. The adoption of object-oriented concept to the design of model bases has several benefits. From the perspectives of object-oriented approach, models in a model base are viewed as object which encapsulate their states and behaviors. This paper focuses on the design of an object-oriented model base that handles various resources of DSS(data, knowledge, models, solvers) in a unified fashion. For the design of a model base, we adopted Object Modeling Techniques(OMT). An object model of OMT can be used for the conceptual design of an overall model base schema. The object model of OMT provides several advantages over the conventional approaches in model base design. The main advantage are model reuse, hierarchical model construction, model sharing, meta-modeling, and unified model object management.

  • PDF

A Study on the Adaptability of Orthotropic Plate and Grillage Modeling for Very Large Floating Structures (초대형 해양구조물에 대한 이방성판과 그릴리지 모델링 적용성 연구)

  • 조규남
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.7-14
    • /
    • 2001
  • For the development of the practical methods of structrual analysis of typical VLFS. Orthortropic plate theory and a grillage beam theory and modeling techniques are studied and relevant numerical analysis are carried out. For the design of pontoon type VLFS, an efficient and reliable structural analysis techniques must be established, and as corresponding methods, two approaches mentioned above were studied in view point of their applicability and efficience. For that purpose, structural idealization is performed to make overall structural analysis first, and the structural behaviors of the model in the airplane landing simulation are evaluated. Through this study it is found that the structural idealization using orthotropic plate and grillage modeling are porved to be adequate and the numerical analysis results for real VLFS yields acceptable deformations in the corresponding simulations.

  • PDF

LTE Signal Propagation Model-based Fingerprint DB Generation for Positioning in Emergency Rescue Situation

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.157-167
    • /
    • 2020
  • Fingerprinting method is useful when estimating the location of a requestor based on LTE signals in an urban area. To do this, it is necessary to acquire location-based signals everywhere in the service area for fingerprint DB generation in advance. However, there may be signal uncollected area within a wide service area, which may cause a problem that the positioning accuracy of the requestor is low. In order to solve this problem, in this paper, signal propagation modeling is performed based on the obtained measurements, and based on this model, the signal information in the non-acquisition region is estimated. To this end, techniques for modeling signal propagation according to a method using measurements are proposed. The performance of the proposed techniques is verified based on the measurements obtained on a test bed selected as Seocho-gu, Seoul. As a result, it can be seen that signal propagation modeling performed based on multidivision segmented measurements has the most performance improvement.

Simulation Modeling of Range and Acceleration Measurement Instruments for Satellite Formation Flying (편대비행 위성용 거리 및 가속도 관측기 시뮬레이션 모델링)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.75-83
    • /
    • 2005
  • NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, which consists of two co-orbiting low altitude satellites, is to measure the Earth gravity field with unprecedented accuracy. Its key instruments include inter-satellite ranging systems and three-axis accelerometers. For the preliminary design and requirements analysis, extensive instrument simulation models are developed. These modeling techniques and orbit-gravity field estimation techniques are described.

Modeling Techniques of the Complex Shear Wall Structure on a Common Foundation (공동기초상 복합 전단벽 구조물의 모델링 기법)

  • 김종수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.241-248
    • /
    • 1997
  • The super-structure in a soil-structure interaction analysis is commonly idealized as lumped parameter system. In this study, the complex shear wall structure is modeled using three different kinds of modeling techniques : 1) full FEM comparatively as an exact solution, 2)equivalent shear spring model assuming mainly shear deformations of the wall, 3) equivalent beam-stick model made by independent static analysis. Dynamic characteristics due to three different modeling methods are compared and investigated before performing structural response analysis. The beam-stick model in comparison to shear spring model gives closer dynamic responses when compared with the full FEM, even though it requires additional unit load static analyses.

  • PDF

Feature Recognition: the State of the Art

  • JungHyun Han
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.68-85
    • /
    • 1998
  • Solid modeling refers to techniques for unambiguous representations of three-dimensional objects. Feature recognition is a sub-discipline focusing on the design and implementation of algorithms for detecting manufacturing information such as holes, slots, etc. in a solid model. Automated feature recognition has been an active research area in stolid modeling for many years, and is considered to be a critical component for CAD/CAM integration. This paper gives a technical overview of the state of the art in feature recognition research. Rather than giving an exhaustive survey, I focus on the three currently dominant feature recognition technologies: graph-based algorithms, volumetric decomposition techniques, and hint-based geometric reasoning. For each approach, I present a detailed description of the algorithms being employed along with some assessments of the technology. I conclude by outlining important open research and development issues.

  • PDF