• Title/Summary/Keyword: Modeling Method

Search Result 9,839, Processing Time 0.041 seconds

Topological Modeling using Sonar Grid Map (초음파 격자 지도를 이용한 위상학적 지도 작성 기법 개발)

  • Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.189-196
    • /
    • 2011
  • This paper presents a method of topological modeling using only low-cost sonar sensors. The proposed method constructs a topological model by extracting sub-regions from the local grid map. The extracted sub-regions are considered as nodes in the topological model, and the corresponding edges are generated according to the connectivity between two sub-regions. A grid confidence for each occupied grid is evaluated to obtain reliable regions in the local grid map by filtering out noisy data. Moreover, a convexity measure is used to extract sub-regions automatically. Through these processes, the topological model is constructed without predefining the number of sub-regions in advance and the proposed method guarantees the convexity of extracted sub-regions. Unlike previous topological modeling methods which are appropriate to the corridor-like environment, the proposed method can give a reliable topological modeling in a home environment even under the noisy sonar data. The performance of the proposed method is verified by experimental results in a real home environment.

Identification of Unknown Remanent Magnetization in the Ferromagnetic Ship Hull Utilizing Material Sensitivity Information Combined with Magnetization Modeling

  • Kim, Nam-Kyung;Jeung, Gi-Woo;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.114-119
    • /
    • 2011
  • This paper presents a magnetization modeling method combined with material sensitivity information to identify the unknown magnetization distribution of a hull and improve the accuracy of the predicted fields. First, based on the magnetization modeling, the hull surface was divided into three-dimensional sheet elements, where the individual remanent magnetization was assumed to be constant. For a fast search of the optimum magnetization distribution on the hull, a material sensitivity formula containing the first-order gradient information of an objective function was combined with the magnetization modeling method. The feature of the proposed method is that it can provide a stable and accurate field solution, even in the vicinity of the hull. Finally, the validity of the method was tested using a scale model ship.

Neuro-Fuzzy Approaches to Ozone Prediction System (뉴로-퍼지 기법에 의한 오존농도 예측모델)

  • 김태헌;김성신;김인택;이종범;김신도;김용국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.616-628
    • /
    • 2000
  • In this paper, we present the modeling of the ozone prediction system using Neuro-Fuzzy approaches. The mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, the modeling of ozone prediction system has many problems and the results of prediction is not a good performance so far. The Dynamic Polynomial Neural Network(DPNN) which employs a typical algorithm of GMDH(Group Method of Data Handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system. The structure of the final model is compact and the computation speed to produce an output is faster than other modeling methods. In addition to DPNN, this paper also includes a Fuzzy Logic Method for modeling of ozone prediction system. The results of each modeling method and the performance of ozone prediction are presented. The proposed method shows that the prediction to the ozone concentration based upon Neuro-Fuzzy approaches gives us a good performance for ozone prediction in high and low ozone concentration with the ability of superior data approximation and self organization.

  • PDF

Nobel Approaches of Intelligent Load Model for Transient Stability Analysis (과도안정도 해석을 위한 지능형 부하모델의 새로운 접근법)

  • Lee, Jong-Pil;Lim, Jae-Yoon;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.96-101
    • /
    • 2008
  • The field of load modeling has attracted the attention since it plays an important role for improving the accuracy of stability analysis and power flow estimation. Also, load modeling is an essential factor in the simulation and evaluation of power system performance. However, conventional load modeling techniques have some limitations with respect to accuracy for nonlinear and composite loads. Thus, precision load modeling technique and reasonable application method is needed for more accurate power system analysis. In this paper, we develop an intelligent load modeling method based. on neural network and application techniques for power system. The proposed method makes it possible to effectively estimate the load model for nonlinear models as well as linear models. Reasonable application method is also proposed for stability analysis. To demonstrate the validity of the proposed method, various experiments are performed and their results are presented.

A Study on Influential Factors in Mathematics Modeling Academic Achievement

  • Li, Mingzhen;Pang, Kun;Yu, Ping
    • Research in Mathematical Education
    • /
    • v.13 no.1
    • /
    • pp.31-48
    • /
    • 2009
  • Utilizing the path analysis method, the study explores the relationships among the influential factors in mathematics modeling academic achievement. The following conclusions are drawn: 1. Achievement motivation, creative inclination, cognitive style, the mathematical cognitive structure and mathematics modeling self-monitoring ability, those have significant correlation with mathematics modeling academic achievement; 2. Mathematical cognitive structure and mathematics modeling self-monitoring ability have significant and regressive effect on mathematics modeling academic achievement, and two factors can explain 55.8% variations of mathematics modeling academic achievement; 3. Achievement motivation, creative inclination, cognitive style, mathematical cognitive structure have significant and regressive effect on mathematics modeling self-monitoring ability, and four factors can explain 70.1% variations of mathematics modeling self-monitoring ability; 4. Achievement motivation, creative inclination, and cognitive style have significant and regressive effect on mathematical cognitive structure, and three factors can explain 40.9% variations of mathematical cognitive structure.

  • PDF

ABS(Attribute Based Surface) Modeling based on the Chordlength Domain (코드랭스 도메인 기법을 이용한 ABS 모델링)

  • Kim Jeong-Hwa;Park Hwa-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.189-196
    • /
    • 2006
  • The ABS method which is modeling the shape-design helps designers concentrate upon the design intuitively, using the modeling method based on the geometrical characteristics, the property information (a point. a curve. slopes. etc.). For the multi-sided patches, the ABS Modeling attempts the modeling with the uniform domain like a right triangle and a regular square. The mentioned method can reduce the speed of modeling but it can cause the difference from a designer's intention in the process of interpolation between the attributes for object modeling. Therefore, in this paper. we propose ABS modeling based on the Chordlength domain method to minimize such differences. The Chordlength, one of the methods generating irregular domain. is the technique transforming the domain in accordance with the length and form of attributes which a shape consists of. The Chordlength domain method is performed using MEL.

  • PDF

Kinematic Modeling of Mobile Robots by Transfer Method of Generalized Coordinates (좌표계 전환기법을 활용한 모바일 로봇의 기구학 모델링)

  • 김도형;김희국;이병주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.44-44
    • /
    • 2000
  • Firstly, kinematic model of various type of wheels which includesskidding and skidding friction are presented. Tend, the transfer method of generalized coordinates which is useful to model the parallel mechanisms, can be applied to mobile robot by including such friction terms. Particularly, by appling the modeling method to mobile robot consisting of two conventional wheels and one caster wheel, forword/reverse kinematic modeling could be obtained without using pseudoinverse solutions.

  • PDF

A Study on Surface Modeling of Hull forms for General purpose CAD program (범용 CAD 프로그램에서의 응용을 위한 선형 곡면화 방법론에 관한 연구)

  • 이준호;김동준
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • In this study surface modeling .method with 3D curve net is proposed. For surface modeling, ship hull was divided into several parts, Generated surface was loaded general purpose CAD program through IGES file format, and the quality of generated surface model was checked by CATIA's internal function. Lastly it is tried to find a method for improving the accuracy of surface connection by using the blending method in CATIA and the result was discussed.

Reasonable Load Characteristic Experiment for Component Load Modeling (개별 부하모델링을 위한 부하의 합리적인 특성실험)

  • Ji, Pyeong-Sik;Lee, Jong-Pil;Im, Jae-Yun;Chu, Jin-Bu;Kim, Jeong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • Load modeling is classified into two methods according to approaching method, so called the measurement and component-based method. The measurement method is to model the load characteristics measured directly at substations and feeders. But it is difficult to measure continuously load characteristics from naturally occurring. system variation. The component-based method consists of the fellowing process; component load modeling, composition rate estimation and aggregation of component loads, etc. In this paper, the characteristic experiment of component loads was performed to obtain data for the component load modeling as the component-based method. At first, representative component loads were selected by the proposed method considering the accuracy of load modeling and the performance possibility of component load experiment in the laboratory. Also an algorithm was Proposed to identify the reliability of data obtained from the component load characteristic experiments. In addition, the results were presented as the case studies.

COMPLEX STOCHASTIC WHEELBASE PREVIEW CONTROL AND SIMULATION OF A SEMI-ACTIVE MOTORCYCLE SUSPENSION BASED ON HIERARCHICAL MODELING METHOD

  • Wu, L.;Chen, H.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.749-756
    • /
    • 2006
  • This paper presents a complex stochastic wheelbase preview control method of a motorcycle suspension based on hierarchical modeling method. As usual, a vehicle suspension system is controlled as a whole body. In this method, a motorcycle suspension with five Degrees of Freedom(DOF) is dealt with two local independent 2-DOF suspensions according to the hierarchical modeling method. The central dynamic equations that harmonize local relations are deduced. The vertical and pitch accelerations of the suspension center are treated as center control objects, and two local semi-active control forces can be obtained. In example, a real time Linear Quadratic Gaussian(LQG) algorithm is adopted for the front suspension and the combination of the wheelbase preview and LQG control method is designed for the rear suspension. The results of simulation show that the control strategy has less calculating time and is convenient to adopt different control strategies for front and rear suspensions. The method proposed in this paper provides a new way for the vibration control of multi-wheel vehicles.