• Title/Summary/Keyword: Modeling Heavyweight Ontology with fuzzy logic

Search Result 1, Processing Time 0.02 seconds

Incorporation of Fuzzy Theory with Heavyweight Ontology and Its Application on Vague Information Retrieval for Decision Making

  • Bukhari, Ahmad C.;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • The decision making process is based on accurate and timely available information. To obtain precise information from the internet is becoming more difficult due to the continuous increase in vagueness and uncertainty from online information resources. This also poses a problem for blind people who desire the full use from online resources available to other users for decision making in their daily life. Ontology is considered as one of the emerging technology of knowledge representation and information sharing today. Fuzzy logic is a very popular technique of artificial intelligence which deals with imprecision and uncertainty. The classical ontology can deal ideally with crisp data but cannot give sufficient support to handle the imprecise data or information. In this paper, we incorporate fuzzy logic with heavyweight ontology to solve the imprecise information extraction problem from heterogeneous misty sources. Fuzzy ontology consists of fuzzy rules, fuzzy classes and their properties with axioms. We use Fuzzy OWL plug-in of Protege to model the fuzzy ontology. A prototype is developed which is based on OWL-2 (Web Ontology Language-2), PAL (Protege Axiom Language), and fuzzy logic in order to examine the effectiveness of the proposed system.