• Title/Summary/Keyword: Modeling Continuum

Search Result 146, Processing Time 0.021 seconds

Heat and mass transfer processes at the most heat-stressed areas of the surface of the descent module

  • Oleg A., Pashkov;Boris A., Garibyan
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.493-506
    • /
    • 2022
  • The study presents the results of the research of heat and heat exchange processes on the heat-stressed elements of the structure of an advanced TsAGI descent vehicle. The studies were carried out using a mathematical model based on solving discrete analogs of continuum mechanics equations. Conclusions were drawn about the correctness of the model and the dependence of the intensity of heat and mass transfer processes on the most heat-stressed sections of the apparatus surface on its geometry and the catalytic activity of the surface.

Analysis of the Numerical Simulation Accuracy in the CFRP-Al Alloy SPR Joint Process According to the CFRP Modeling Method (CFRP 모델링 기법에 따른 CFRP-Al합금 SPR 접합공정의 수치해석 정확도 분석)

  • Kim, S.H.;Park, N.;Song, J.H.;Noh, W.;Park, K.Y.;Bae, G.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.265-271
    • /
    • 2020
  • The purpose of this paper is to analyze the numerical simulation accuracy according to the CFRP modeling method in the CFRP-Al alloy SPR (Self-Piercing Rivet) joint process. The mechanical properties of the CFRP, aluminum sheet are precisely obtained from the tensile test according to the loading direction. Additionally, the hardening curve of rivet was calculated from the inverse analysis of the machined rivet-ring compression test. For the CFRP-Al alloy SPR simulation, two kinds of the CFRP modeling methods were established based on the continuum and layer-by-layer approaches. The simulation results showed that the CFRP layer-by-layer modeling method can provide more reliable prediction shape of the fractured sheets and deformed rivet. This simulation technique can be used in evaluating the CFRP-Metal SPR performance and designing the SPR process conditions.

Review on Methods of Hydro-Mechanical Coupled Modeling for Long-term Evolution of the Natural Barriers

  • Chae-Soon Choi;Yong-Ki Lee;Sehyeok Park;Kyung-Woo Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.429-453
    • /
    • 2022
  • Numerical modeling and scenario composition are needed to characterize the geological environment of the disposal site and analyze the long-term evolution of natural barriers. In this study, processes and features of the hydro-mechanical behavior of natural barriers were categorized and represented using the interrelation matrix proposed by SKB and Posiva. A hydro-mechanical coupled model was evaluated for analyzing stress field changes and fracture zone re-activation. The processes corresponding to long-term evolution and the hydro-mechanical mechanisms that may accompany critical processes were identified. Consequently, practical numerical methods could be considered for these geological engineering issues. A case study using a numerical method for the stability analysis of an underground disposal system was performed. Critical stress distribution regime problems were analyzed numerically by considering the strata's movement. Another case focused on the equivalent continuum domain composition under the upscaling process in fractured rocks. Numerical methods and case studies were reviewed, confirming that an appropriate and optimized modeling technique is essential for studying the stress state and geological history of the Korean Peninsula. Considering the environments of potential disposal sites in Korea, selecting the optimal application method that effectively simulates fractured rocks should be prioritized.

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

Interaction analysis of a building frame supported on pile groups

  • Dode, P.A.;Chore, H.S.;Agrawal, D.K.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.305-318
    • /
    • 2014
  • The study deals with the physical modeling of a typical building frame resting on pile foundation and embedded in cohesive soil mass using complete three-dimensional finite element analysis. Two different pile groups comprising four piles ($2{\times}2$) and nine piles ($3{\times}3$) are considered. Further, three different pile diameters along with the various pile spacings are considered. The elements of the superstructure frame and those of the pile foundation are descretized using twenty-node isoparametric continuum elements. The interface between the pile and pile and soil is idealized using sixteen-node isoparametric surface elements. The current study is an improved version of finite element modeling for the soil elements compared to the one reported in the literature (Chore and Ingle 2008). The soil elements are discretized using eight-, nine- and twelve-node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in the elastic state at all the time. The interaction analysis is carried out using sub-structure approach in the parametric study. The total stress analysis is carried out considering the immediate behaviour of the soil. The effect of various parameters of the pile foundation such as spacing in a group and number piles in a group, along with pile diameter, is evaluated on the response of superstructure. The response includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement in the range of 58 -152% and increase the absolute maximum positive and negative moments in the column in the range of 14-15% and 26-28%, respectively. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and the soil considered in the present study.

Bree's interaction diagram of beams with considering creep and ductile damage

  • Nayebi, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.665-678
    • /
    • 2008
  • The beams components subjected to the loading such as axial, bending and cyclic thermal loads were studied in this research. The used constitutive equations are those of elasto-plasticity coupled to ductile and/or creep damage. The nonlinear kinematic hardening behavior was considered in elastoplasticity modeling. The unified damage law proposed for ductile failure and fatigue by the author of Sermage et al. (2000) and Kachanov's creep damage model applied to cyclic creep and low cycle fatigue of beams. Based on the results of the analysis, the shakedown limit loads were determined through the calculation of the residual strains developed in the beam analysis. The iterative technique determines the shakedown limit load in an iterative manner by performing a series of full coupled elastic-plastic and continuum damage cyclic loading modeling. The maximum load carrying capacity of the beam can withstand, were determined and imposed on the Bree's interaction diagram. Comparison between the shakedown diagrams generated by or without creep and/or ductile damage for the loading patterns was presented.

An advanced single-particle model for C3S hydration - validating the statistical independence of model parameters

  • Biernacki, Joseph J.;Gottapu, Manohar
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.989-999
    • /
    • 2015
  • An advanced continuum-based multi-physical single particle model was recently introduce for the hydration of tricalcium silicate ($C_3S$). In this model, the dissolution and the precipitation events are modeled as two different yet simultaneous chemical reactions. Product precipitation involves a nucleation and growth mechanism wherein nucleation is assumed to happen only at the surface of the unreacted core and product growth is characterized via a two-step densification mechanism having rapid growth of a low density initial product followed by slow densification. Although this modeling strategy has been shown to nicely mimic all stages of $C_3S$ hydration - dissolution, dormancy (induction), the onset of rapid hydration, the transition to slow hydration and prolonged reaction - the major criticism is that many adjustable parameters are required. If formulated correctly, however, the model parameters are shown here to be statistically independent and significant.

COMPARISON OF NUMERICAL METHODS FOR TERNARY FLUID FLOWS: IMMERSED BOUNDARY, LEVEL-SET, AND PHASE-FIELD METHODS

  • LEE, SEUNGGYU;JEONG, DARAE;CHOI, YONGHO;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.83-106
    • /
    • 2016
  • This paper reviews and compares three different methods for modeling incompressible and immiscible ternary fluid flows: the immersed boundary, level set, and phase-field methods. The immersed boundary method represents the moving interface by tracking the Lagrangian particles. In the level set method, an interface is defined implicitly by using the signed distance function, and its evolution is governed by a transport equation. In the phase-field method, the advective Cahn-Hilliard equation is used as the evolution equation, and its order parameter also implicitly defines an interface. Each method has its merits and demerits. We perform the several simulations under different conditions to examine the merits and demerits of each method. Based on the results, we determine the most suitable method depending on the specific modeling needs of different situations.

SED modeling of the Class 0 protostar L1527 IRS

  • Baek, Giseon;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.54.3-55
    • /
    • 2016
  • We model the spectral energy distribution (SED) of the Class 0 protostar L1527 IRS using a dust continuum radiative transfer code RADMC-3D to study the initial condition of gravitational collapse. To constrain the envelope structure, we use the data obtained by Herschel /PACS, which covers the far-infrared regime ($55-190{\mu}m$) where the SED of L1527 IRS peaks. According to our modeling, a more flattened density profile fits the far-infrared SED of L1527 IRS better than the density profile of a rotating and infalling envelope. Thus, we employ the density structure of a Bonnor-Ebert sphere, which consists of the inner flat-topped and the outer power-law regions and is often used for describing the density structure of the youngest sources in the low mass star formation process. A Bonnor-Ebert sphere fits very well the observed SED at ${\lambda}$ > $10{\mu}m$, suggesting that L1527 IRS might collapse from an unstable Bonnor-Ebert sphere rather than a singular isothermal sphere.

  • PDF