• Title/Summary/Keyword: Model-based Compensation

Search Result 525, Processing Time 0.022 seconds

A Current Controller with the Compensation of the Input Voltage Unbalance and Distortion for Three Phase PWM Rectifier (전원전압의 불평형 및 왜곡 보상기능을 갖는 3상 PWM 정류기의 전류제어기)

  • Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.594-601
    • /
    • 2011
  • In this paper, a new current controller with the compensation of an unbalance and distorted grid voltages has been proposed. Generally, in the three-phase power system, single phase or nonlinear loads can be connected with the 3 phase linear load simultaneously on the same point of common coupling. Therefore, The source voltage unbalance and distortion problem can be occurred. Under these unbalance and distorted grid voltage conditions, the input current of 3 phase PWM rectifiers also have unbalance and distortion. In this paper, a current controller with the simple Model Reference Adaptive System based unbalance and distorted voltages observer is proposed to get a sinusoidal input current. The performance of the proposed algorithm is verified through the simulation and the experiment.

Design Robust Fuzzy Model-Based Controller for Uncertain Nonlinear Systems (불확실 비선형 시스템을 위한 강인한 퍼지 모델 기반 제어기)

  • Joo, Young-Hoon;Chang, Wook;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.407-414
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex uncertain single-input single-output nonlinear systems. The proposed method represents the nonlinear system using a Takagi-Cugeno fuzzy model and construct a global fuzzy logic controller by blending all local state feedback controllers with a sliding mode controller. Unlike the commonly used parallel distributed compensation technique, we can design a global stable fuzzy controller without finding a common Lyapunov function for all local control systems, and can obtain good tracking performance by using sliding mode control theory. Furthermore, stability analysis is carried out not for the fuzzy model but for the real nonlinear system with uncertainties. Duffing forced oscillation sysmte is used as an example to show the effectiveness and feasibility of the proposed method.

  • PDF

Design of Robust Controller and Virtual Model of Remote Control System using LQG/LTR (LQG/LTR 기법을 적용한 원격제어시스템의 가상모델과 강건제어기의 설계)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.193-198
    • /
    • 2022
  • In this paper, we introduce the improved control method are communicated between a master and a slave robot in the teleoperation systems. When the master and slave robots are located in different places, time delay is unavoidable under the network environment and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The time delay may cause instability in teleoperation systems especially if those systems include haptic feedback. This paper presents a control scheme based on the estimator with virtual master model in teleoperation systems over the network. As the behavior of virtual model is tracking the one of master model, the operator can control real master robot by manipulating the virtual robot. And LQG/LTR scheme was adopted for the compensation of un-modeled dynamics. The approach is based on virtual master model, which has been implemented on a robot over the network. Its performance is verified by the computer simulation and the experiment.

An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation

  • Wang, Zhen;Wu, Bin;Bursi, Oreste S.;Xu, Guoshan;Ding, Yong
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1247-1267
    • /
    • 2014
  • Real-Time Hybrid Simulation (RTHS) is a novel approach conceived to evaluate dynamic responses of structures with parts of a structure physically tested and the remainder parts numerically modelled. In RTHS, delay estimation is often a precondition of compensation; nonetheless, system delay may vary during testing. Consequently, it is sometimes necessary to measure delay online. Along these lines, this paper proposes an online delay estimation method using least-squares algorithm based on a simplified physical system model, i.e., a pure delay multiplied by a gain reflecting amplitude errors of physical system control. Advantages and disadvantages of different delay estimation methods based on this simplified model are firstly discussed. Subsequently, it introduces the least-squares algorithm in order to render the estimator based on Taylor series more practical yet effective. As a result, relevant parameter choice results to be quite easy. Finally in order to verify performance of the proposed method, numerical simulations and RTHS with a buckling-restrained brace specimen are carried out. Relevant results show that the proposed technique is endowed with good convergence speed and accuracy, even when measurement noises and amplitude errors of actuator control are present.

Delay-Dependent Control for Time-Delayed T-S Fuzzy Systems Using Descriptor Representation

  • Jeung, Eun-Tae;Oh, Do-Chang;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.182-188
    • /
    • 2004
  • This paper presents a design method of delay-dependent control for T-S fuzzy systems with time delays. Based on parallel distributed compensation (PDC) and a descriptor model transformation of the system, a delay-dependent control is utilized. An appropriate Lyapunov-Krasovskii functional is chosen for delay-dependent stability analysis. A sufficient condition for delay-dependent control is represented in terms of linear matrix inequalities (LMIs).

Intelligent Digital Redesign of a Fuzzy-Model-Based Controllers for Nonlinear Systems with Uncertainties (불확실성을 갖는 비선형 시스템을 위한 퍼지 모델 기반 제어기의 지능형 디지털 재설계)

  • Jang Kwon-Kyu;Kwon Oh-Shin;Joo Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.227-232
    • /
    • 2006
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear system which may also contain system uncertainties. The continuous-time uncertain TS fuzzy model is first contructed to represent the uncertain nonlinear system. A parallel distributed compensation(PDC) technique is then used to design a fuzzy-model-based controller for both stabilization. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using a globally intelligent digital redesign method. This new technique is designed by a global matching of state variables between analog control system and digital control system. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear systems with uncertainties. Finally, Chaotic Lorenz system is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

A Study on the Relationships among Turnover Intention, Job Embeddedness and Job Satisfaction, and Human Resource Management Practices of the Software Personnel in Small and Medium Sized IT Service Firms (중소 IT 서비스 기업 소프트웨어 인력의 이직 의도, 직무 배태성 및 직무 만족, 인사관리 프랙티스 간의 관계에 관한 연구)

  • Jang, Hyunchoon;Hwang, K.T.
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.1
    • /
    • pp.107-136
    • /
    • 2014
  • This study aims to suggest research implications that may contribute to preventing turnover of personnel in small and medium sized software companies. A research model is developed based on the Bergiel, et al. (2009) and Woo and Hwang (2010). This model describes how human resource management (HRM) practices (compensation, recognition, job autonomy, technical capability development, work-life conflict) affect turnover intention, through the mediating effects of job satisfaction and job embeddedness. 177 questionnaires are collected and analyzed. Validity and reliability of measures, and appropriateness of the structural model are verified. Results of the hypotheses testing are somewhat different from the expected ones: Only compensation and technical capability development are significant, but the remaining variables are not significant in affecting job satisfaction and job embeddedness. As for turnover intention, job embeddedness and job satisfaction are proved to be significant predictors. From the analyses of data, subsequent interview with several respondents and additional data analyses, more research implications are derived. The study has a limitation of not including more diverse variables that might affect job embeddedness and job satisfaction of so called road warriors.

Compensation for Elastic Recovery in a Flexible Forming Process Using Predictive Models for Shape Error (성형 오차 예측 모델을 이용한 가변 성형 공정에서의 탄성 회복 보정)

  • Seo, Y.H.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.479-484
    • /
    • 2012
  • The objective of this study is to compensate the elastic recovery in the flexible forming process using the predictive models. The target shape was limited to two-dimensional shape having only one curvature radius in the longitudinal-direction. In order to predict the shape error the regression and neural network models were established based on the finite element (FE) simulations. A series of simulations were conducted considering input variables such as the elastic pad thickness, the thickness of plate, and the objective curvature radius. Then, at sampling points in the longitudinal-direction, the shape errors between formed and objective shapes could be calculated from the FE simulations as an output variable. These shape errors were expressed to a representative error value by the root mean square error (RMSE). To obtain the correct objective shape the die shape was adjusted by the closed-loop using the neural network model since the neural network model shows a higher capability of estimating the shape error than the regression model. Finally the experimental result shows that the formed shape almost agreed with the objective shape.

Model-Based Tabu Search Algorithm for Free-Space Optical Communication with a Novel Parallel Wavefront Correction System

  • Li, Zhaokun;Zhao, Xiaohui;Cao, Jingtai;Liu, Wei
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.45-54
    • /
    • 2015
  • In this study, a novel parallel wavefront correction system architecture is proposed, and a model-based tabu search (MBTS) algorithm is introduced for this new system to compensate wavefront aberration caused by atmospheric turbulence in a free-space optical (FSO) communication system. The algorithm flowchart is presented, and a simple hypothetical design for the parallel correction system with multiple adaptive optical (AO) subsystems is given. The simulated performance of MBTS for an AO-FSO system is analyzed. The results indicate that the proposed algorithm offers better performance in wavefront aberration compensation, coupling efficiency, and convergence speed than a stochastic parallel gradient descent (SPGD) algorithm.

Fault Tolerant Control for Nonlinear Boiler System (비선형 보일러 시스템에서의 이상허용제어)

  • Yoon, Seok-Min;Kim, Dae-Woo;Lee, Myung-Eui;Kwon, O-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.254-260
    • /
    • 2000
  • This paper deals with the development of fault tolerant control for a nonlinear boiler system with noise and disturbance. The MCMBPC(Multivariable Constrained Model Based Predictive Control) is adopted for the control of the specific boiler turbin model. The fault detection and diagnosis are accomplished with the Kalman filter and two bias estimators. Once a fault is detected, two Bias estimators are driven to estimate the fault and to discriminate Process fault and sensor fault. In this paper, a fault tolerant control scheme combining MCMBPC with a fault compensation method based on the bias estimator is proposed. The proposed scheme has been applied to the nonlinear boiler system and shown a satisfactory performance through some simulations.

  • PDF