• Title/Summary/Keyword: Model-Based Safety Analysis

Search Result 1,503, Processing Time 0.029 seconds

Integration of Systems Engineering and System Safety Analysis for Developing CBTC System (CBTC 시스템 개발을 위한 시스템엔지니어링과 안전성 분석의 통합)

  • 박중용;박영원
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This article proposes an integrated systems engineering and safety analysis model for safety-critical systems development. A methodology in system design for safety is considered during the early phase of the development life cycle of systems engineering process. The evolution of the design automation technology has enabled engineers to perform the model-based systems engineering. A Computer-Aided Systems Engineering(CASE) tool, CORE, is utilized to integrate the systems engineering model with a system safety analysis model. The results of the functional analysis phase can drive the analysis of the system safety. An example of Communications-Based Train Control(CBTC) system for an Automated Guided Transit(AGT) system demonstrated an application of the integrated model.

Knowledge Modeling of Reliability Analysis and Safety Design for Offshore Safety Instrument System with MBSE (Model-Based Systems Engineering) (모델기반 시스템엔지니어링을 활용한 해양플랜트 안전시스템(SIS, Safety Instrumented System)의 신뢰도 분석 및 안전설계 지식 모델링)

  • Bae, Jeong-hoon;Jung, Min-jae;Shin, Sung-chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.222-235
    • /
    • 2018
  • The hydrocarbon gas leak in the offshore plant can cause large accidents and lead to significant damages to human, property and environment. For prevention of fire or explosion accidents from gas leak, a SIS(Safety Instrumented System) should be installed. In the early stage of the offshore design, required SIL(Safety Integrated Level) is determined and reliability analysis is performed to verify the design in reliability aspects. This study collected data, information related to reliability analysis and created knowledge model of safety design for the offshore system with MBSE(Model-Based Systems Engineering) concept. Knowledge model could support safety engineer's design tasks as the guidance of reliability analysis procedure of safety design and make good conversation with other engineers in yard, class, company, etc.

Model-based Analysis to Improve the Safety of Urban Logistics System Using Vacant Space (유휴공간을 활용한 도시물류 시스템의 안전성 향상을 위한 모델기반 분석)

  • Park, Jae-Min;Kim, Joo-Uk;Kim, Young-Min
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The growth of the online market is accelerating due to the development of technology and the pandemic era. The delivery service through the courier must be used to deliver the ordered goods to the customer through the online market. With the growth of the online market, the logistics market for delivery is also growing. The traffic and environmental problems are emerging as social issues. Urban logistics technology using underground space based on the urban railway developed to improve logistics efficiency in a metropolitan area and a new alternative to environmental problems. This study proposed a plan to secure system safety through safety analysis based on operational concept definition and scenario analysis by applying model-based perspective analysis to the system under development.

Architectural model driven dependability analysis of computer based safety system in nuclear power plant

  • Wakankar, Amol;Kabra, Ashutosh;Bhattacharjee, A.K.;Karmakar, Gopinath
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.463-478
    • /
    • 2019
  • The most important non-functional requirements for dependability of any Embedded Real-Time Safety Systems are safety, availability and reliability requirements. System architecture plays the primary role in achieving these requirements. Compliance with these non-functional requirements should be ensured early in the development cycle with appropriate considerations during architectural design. In this paper, we present an application of system architecture modeling for quantitative assessment of system dependability. We use probabilistic model checker (PRISM), for dependability analysis of the DTMC model derived from system architecture model. In general, the model checking techniques do not scale well for analyzing large systems, because of prohibitively large state space. It limits the use of model checking techniques in analyzing the systems of practical interest. We propose abstraction based compositional analysis methodology to circumvent this limitation. The effectiveness of the proposed methodology has been demonstrated using the case study involving the dependability analysis of safety system of a large Pressurized Water Reactor (PWR).

Quantitative Analysis on the Electrical Fire Preventive Effect of Safety Inspection for Electrical Facilities for General Use (일반용 전기설비 안전점검의 전기화재 예방효과에 대한 정량적 분석)

  • Kim, Taek-Hee;Yoo, Jae-Geun;Jeon, Jeong-Chay
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • This paper presents a quantitative analysis method to quantitatively indicate a electrical fire preventive effect of safety inspection for electrical facilities for general use. Logic model was developed based on whether enforcement of safety inspection for electrical facilities, and then the developed analysis model was converted to hydraulic model by using mathematical logic. The electrical fire preventive effect of safety inspection for electrical facilities was quantitatively calculated by applying electrical safety inspection results and fire statistics for five years to the developed hydraulic model. The results show that electrical fire preventive effects of 5,542 cases on annual average for five years.

An Improved SysML-Based Failure Model for Safety Verification By Simulation (시뮬레이션을 통해 안전성 검증을 위한 개선된 SysML 기반 고장 모델)

  • Kim, Chang-Won;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.410-417
    • /
    • 2018
  • System design errors are more likely to occur in modern systems because of their steadily increasing size and complexity. Failures due to system design errors can cause safety-related accidents in the system, resulting in extensive damage to people and property. Therefore, international standards organizations, such as the U.S. Department of Defense and the International Electrotechnical Commission, have established international safety standards to ensure system safety, and recommend that system design and safety activities should be integrated. Recently, the safety of a system has been verified by modeling through a model-based system design. On the other hand, system design and safety activities have not been integrated because the model for system design and the failure model for safety analysis and verification were developed using different modeling language platforms. Furthermore, studies using UML or SysML-based failure models for deriving safety requirements have shown that these models have limited applicability to safety analysis and verification. To solve this problem, it is essential to extend the existing methods for failure model implementation. First, an improved SysML-based failure model capable of integrating system design and safety verification activities should be produced. Next, this model should help verify whether the safety requirements derived via the failure model are reflected properly in the system design. Therefore, this paper presents the concept and method of developing a SysML-based failure model for an automotive system. In addition, the failure model was simulated to verify the safety of the automotive system. The results show that the improved SysML-based failure model can support the integration of system design and safety verification activities.

On the Development of Systems Safety Requirements Using Hazard Analysis Results (위험원 분석 결과를 반영한 시스템 안전 요구사항 생성에 관한 연구)

  • Kim, Jae-Chul;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.9-16
    • /
    • 2011
  • Modern systems become more complex and the demand for systems safety goes up sharply. Thus, the proper handling of the safety requirements in the systems design is getting greatly increased attention these days. Hazard analysis has been one of the active areas of research in connection with systems safety. In this paper, we study a subject on how the hazard analysis results can be incorporated in the systems design. To this end we set up a goal on how to systematically generate safety requirements that should reflect hazard analysis results and be implemented in the systems design and development. To do so, we first review the process for systems design and suggest the associated Model. Then the process and results of hazard analysis are analyzed and Modeled particularly with emphasis on the safety data. The resulting data Model incorporating both the hazard analysis and system life cycle is used in the generation of safety requirements. Based on the developed data Model, the generation of the requirements, the construction of requirements DB, and the change management later on is demonstrated through the use of a computer-aided software tool.

The Research on the Real-time Emergency Response Plan for the Company based on Consequence Analysis for Chemical Accidents (화학사고 발생 시 피해예측 모델과 연계된 사업장의 실시간 비상대응 체계에 관한 연구)

  • Jun Ho Ha;Chang Jun Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.28-37
    • /
    • 2024
  • The recent surge in the production and handling of hazardous materials in Korea necessitates developing and implementing robust emergency response plans. These plans are crucial in safeguarding the well-being of workers and residents in the event of an incident. The consequence analysis methodology outlined in the KOSHA guidelines provides a foundation for designing emergency response plans in the event of chemical accidents. However, the consequence analysis is evaluated based on assumed accident cases or worst-case scenarios. Consequently, the emergency response plan based on the consequence analysis may overestimate the damage area, complicating rescue efforts and unnecessarily increasing costs. More information and parameters become available after an accident, enabling more accurate consequence analysis. This implies that the results of consequence analysis based on this detailed information provide more realistic results than those based on assumed accidents. This study attempts to optimize the resource allocation and cost-effectiveness of emergency response plans for chemical accidents. Existing procedures and manuals are revised to elucidate the proposed model and conduct real-time consequence analysis. The existing emergency response plan is compared to verify the proposed model's efficacy. The obtained results indicate that the proposed model can exhibit better performance.

A Study on Autonomic Analysis for Servicing Intelligent Gas Safety Management Based on RFID/USN (RFID/USN 기반 지능형 가스안전관리 서비스를 위한 자율적 분석 연구)

  • Oh, Jeong-Seok;Choi, Kyung-Seok;Kwon, Jeong-Rock;Yoon, Ki-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.51-56
    • /
    • 2008
  • As RFID/USN technology is used in the latest industry trend, the information analysis paradigm shifts to intelligence service environment. The intelligent service includes autonomic operation, which select activity by defining itself to the status of industry facilities. Furthermore, information analysis based on IT used to frequently data mining for detecting the meaning information and deriving new pattern. This paper suggest self-classifying of context-aware by applying data mining in gas facilities for serving the intelligent gas safety management. We modify data algorithm for fitting the domain of gas safety, construct context-aware model by using the proposed algorithm, and demonstrate our method. As the accuracy of our model is improved over 90%, the our approach can apply to intelligent gas safety management based on RFID/USN environments.

An Application Study of Accident Analysis Method Based on Epidemiological Model to Improve Occupational Safety and Health Management System (사업장 안전보건관리체계 향상을 위한 역학모형 기반의 사고분석기법 활용 방안 연구)

  • Kyunghwan Kim;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • The Severe Disaster Punishment Act had recently been established in order to promote safety and health (OSH) management system for severe accident prevention. OSH management system is primarily designed based on risk assessments; however, companies in industries have been experiencing difficulties in hazard identification and selecting proper measures for risk assessments and accident prevention. This study intended to introduce an accident analysis method based on epidemiological model in finding hazard and preventive measures. The accident analysis method employed in this study was proposed by the U.S. Department of Energy. To demonstrate the effectiveness of the accident analysis method, this study applied it to two accident cases occurred in construction and manufacturing industries. The application process and results of this study can be utilized in improving OSH management system and preventing severe accidents.