• Title/Summary/Keyword: Model tool

Search Result 6,089, Processing Time 0.03 seconds

Tool Wear Monitoring using Time Series Model and Fractal Analysis (시계열 모델과 프랙탈 해석을 이용한 공구마멸 감시)

  • 최성필;강명창;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.69-73
    • /
    • 1996
  • Tool wear monitoring is very important aspect in metal cutting because tool wear effects quarity and precision of workpiece, tool life etc. In this study we detected force signal through tool dynamometer in turning and using it we conducted 6th AR modeling and fractal analysis. Finally the back-propagation model of the neural network is utilized to monitor tool wear and features are extracted through AR model and fractal analysis.

  • PDF

Finite Element Model for Wear Analysis of Conventional Friction Stir Welding Tool

  • Hyeonggeun Jo;Ilkwang Jang;Yeong Gil Jo;Dae Ha Kim;Yong Hoon Jang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.118-122
    • /
    • 2023
  • In our study, we develop a finite element model based on Archard's wear law to predict the cumulative wear and the evolution of the tool profile in friction stir welding (FSW) applications. Our model considers the rotational and translational behaviors of the tool, providing a comprehensive description of the wear process. We validate the accuracy of our model by comparing it against experimental results, examining both the predicted cumulative wear and the resulting changes to the tool profile caused by wear. We perform a detailed comparison between the predictions of the model and experimental data by manipulating non-dimensional coefficients comprising model parameters, such as element sizes and time increments. This comparison facilitates the identification of a specific non-dimensional coefficient condition that best replicates the experimentally observed cumulative wear. We also directly compare the worn tool profiles predicted by the model using this specific non-dimensional coefficient condition with the profiles obtained from wear experiments. Through this process, we identify the model settings that yield a tool wear profile closely aligning with the experimental results. Our research demonstrates that carefully selecting non-dimensional coefficients can significantly enhance the predictive accuracy of finite element models for tool wear in FSW processes. The results from our study hold potential implications for enhancing tool longevity and welding quality in industrial applications.

5-Axis Cross-Coupling Control System Based on a Novel Real-Time Tool Orientation Error Model (새로운 실시간 공구방향오차 모델에 기초한 5 축 연동제어 시스템)

  • Byun, Je-Hyung;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.48-53
    • /
    • 2010
  • 5-axis CNC machining now is getting popular because it can deal with complex shapes such as impeller, turbine blade and propeller without additional equipment or process, proving a set of various tool orientations. CAM software related to 5-axis machining is being developed quickly so that users can take advantage of potential capacities of 5-axis machine tools. However, only a few researches can be found in the area of control strategy development for 5-axis machining. This paper proposes a 5-axis cross-coupling control system based on a novel tool orientation error model. The proposed tool orientation error model provides accurate information on the tool orientation error in real time, which in turn enables directly controlling the tool orientation accuracy. The proposed control system also employs a contour error model to calculate the contour error and reflect it in the control as well. The accuracy of the proposed tool orientation error model is verified and the performance of the 5-axis cross-coupling control system in terms of both contouring and tool orientation accuracy is evaluated through computer simulations compared with existing 5-axis control systems.

Prediction of Surface Topography by Dynamic Model in High Speed End Milling (고속 엔드밀 가공시 동적 모델에 의한 표면형상 예측)

  • Lee, Gi-Yong;Ha, Geon-Ho;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1681-1688
    • /
    • 2000
  • A dynamic model for the prediction of surface topography in high speed end milling process is developed. In this model the effect of tool runout, tool deflection and spindle vibration were taken in to account. An equivalent diameter of end mill is obtained by finite element method and tool deflection experiment. A modal parameter of machine tool is extracted by using frequency response function. The tool deflection, spindle vibration chip thickness and cutting force were calculated in dynamic cutting condition. The tooth pass is calculated at the current angular position for each point of contact between the tool and the workpiece. The new dynamic model for surface predition are compared with several investigated model. It is shown that new dynamic model is more effective to predict surface topography than other suggested models. In high speed end milling, the tool vibration has more effect on surface topography than the tool deflection.

NURBS Post-processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1111-1117
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good for precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied, and the machining result of NURBS tool path was compared with that of linear tool path. The N-post, post-processing and virtual machining software was developed. The N-Post post-processes linear tool path to NURBS tool path and quickly shades machined product on OpenGL view and compares a machined product with original CAD surface. A virtual machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error of post-processed NURBS tool path was reduced to 43%. The original tool path and NURBS tool path was used to machine general model using same machine tool and machining condition. The machining time of post-processed NURBS tool path was reduced up to 38%.

  • PDF

Cutting Force Prediction in End Milling of STS 304 Considering Tool Wear (STS 304 엔드밀 가공시 공구마멸을 고려한 절삭력 예측)

  • Kim, Tae-Young;Jeong, Eun-Cheol;Shin, Hyung-Gon;Oh, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.46-53
    • /
    • 1999
  • Cutting force characteristics is closely related with tool wear on the end milling. And it is found that the tool wear can be properly obtained by observation through the tool-maker's microscope when STS 304 is cut using an end mill. The relationship between the tool wear and the cutting force is established based on data obtained from a series of experiments. A cutting force model can be derived from basic cutting force model using parasitic force components of this tool wear. The results of th simulation using the cutting force model proposed in this paper were verified experimentally and a good agreement was partly obtained. The proposed model is capable of predicting increased cutting force due to tool wear.

  • PDF

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

A Study on the Precision Machining during End Milling Poeration by Prediction of Generated Surface Topography (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.788-793
    • /
    • 1997
  • The surface,generated by end milling operation, is deteriorated by tool runout,vibration,friction,tool deflection, etc. In many source,deflection of tool affects to surfave accuracy. To develop a surface accracy model,method for the prediction of the topography of machined surfaces has been developed based on models of machine tool kinematics and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool resulted in cutting force. For the more accurate prediction of cutting force,flexible end mill model is used to simulate cutting process. Compute simu;ation have shown the feasibility of the surface generation system.

  • PDF

A Reverse Kinematic Approach for Error Analysis of a Machine Tool Using Helical Ball Bar Test (헬리컬 볼바 측정을 사용한 공작기계 오차해석의 역기구학적 접근)

  • 김기훈;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.703-707
    • /
    • 2000
  • Machine tool errors have to be characterized and predicted to improve machine tool accuracy. A real-time error compensation system has been developed based on volumetric error synthesis model which is composed of machine tool errors. This paper deals with new algorithm about verification of machine tool errors. This new algorithm uses a simplified volumetric error synthesis model. This simplified model is constructed with only main components among the error components of the machines. This main error components are analyzed by three-dimensional helical ball bar test. By substituting result of helical ball bar test fer simplified model, we could find that obtained error components are closed to real error components.

  • PDF

A Study on the Compensation of Milling Errors by Regenerating of Tool Trajectory (공구 궤적 재구성에 의한 밀링 가공 오차의 보상에 관한 연구)

  • 쟝이브하스퀘트;필립데팡세;서태일
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.137-144
    • /
    • 1998
  • In this paper we present our research dealing with the problem of tool deflection during the milling. We try to compensate the errors by considering a new tool trajectory. In order to determine the compensated tool trajectory, the problem is divided in three steps : cutting forces model, tool deflection model and trajectory compensation. Starting from experimental data, we determine a cutting forces model., which allows us to anticipate the tool deflection along one nominal path. In order to determine the compensated tool trajectory, we propose in this paper a method of path compensation, called “mirror method”. This method of tool path optimization allows to minimize errors due to tool deflection. Several examples are processed in simulations and validated experimentally.

  • PDF