• Title/Summary/Keyword: Model soil box

Search Result 104, Processing Time 0.024 seconds

The Effects of Negative Pressure on Horizontal Drain Method (수명배수공법에 있어서 부압의 영향에 관한 실험적 연구)

  • 김정기;김지용;정승용;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.551-558
    • /
    • 2001
  • The horizontal drain method is one of methods improving reclamation ground. This method reduces consolidation time by using drained installed horizontally, and negative pressure is applied on end of these drains by vacuum pump. But, effective negative pressure still wasn't evaluated in applying this method to reclamation ground. To estimate optimum negative pressure, soil box test that make a model the in-situ by installing horizontal drains in the center is performed pressing different vacuum pressure In the laboratory, and the variations in settlement and volume of drained water through the drains during consolidation process were measured. Also, water content with distance from drain and with depth is measured after the test.

  • PDF

Simultaneous Removal of Cd and Cr(VI) in the Subsurface Using Permeable Reactive Barrier Filled with Fe-loaded Zeolite: Soil Box Experiment (Fe-loaded zeolite로 충진된 투수성 반응벽체를 이용한 지반 내 Cd과 Cr(VI)의 동시제거: 모형 토조 실험)

  • Rhee, Sung-Su;Lee, Seung-Hak;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.61-68
    • /
    • 2010
  • A pilot-scale model test was performed to estimate the availability of new material, Fe-loaded zeolite, as the filling material in permeable reactive barrier (PRB) against the contaminated groundwater with both Cd and Cr(VI). Aquifer was simulated by filling up a large scale soil tank with sands, and mobilizing the water flow by the head difference of water level in both ends of the tank. Then, the mixture of concentrated Cd and Cr(VI) solution was injected into the aquifer to form a contaminant plume, and its behavior through Fe-loaded zeolite barrier was monitored. The test results showed that Fe-loaded zeolite barrier successfully treated the contaminant plume containing both Cd and Cr(VI) and that the immobilized contaminants in the barrier were not desorbed or released. The results indicated that the Fe-loaded zeolite could be a promising material in PRBs against the multiple contaminants with different ionic forms like Cr(VI) and Cd.

A strengthening effect based on a grid size of a bamboo-mat and a model-test for the understanding on ground failure. (대나무매트의 격자크기에 따른 보강효과 및 지반 파괴형상 파악을 위한 모형시험)

  • Lee, Ji-Hun;Kim, Seung-Gon;Kim, Woo-Jin;Kim, Jong-Ryeol;Kang, Hee-Bog
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1673-1677
    • /
    • 2008
  • A method of construction with a basis treatment that uses a latticed bamboo mat puts bamboo's peculiarity and bamboo mat's bending substance to use, and a latticed bamboo mat equally distributes to embankment loading in a basis ground. Therefore it prevents ground destruction by an ill-balanced load and an irregular ground subsidence, and it makes safety system. This investigation make progress a soil box model by a dredged reclamation ground of west and south sea at domestic area, and make a comparative study and analyze the strengthening effect based on a grid size of a bamboo-mat and ground failure that it will use in the field.

  • PDF

Effect of pile group geometry on bearing capacity of piled raft foundations

  • Fattah, Mohammed Y.;Yousif, Mustafa A.;Al-Tameemi, Sarmad M.K.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.829-853
    • /
    • 2015
  • This is an experimental study to investigate the behaviour of piled raft system in different types of sandy soil. A small scale "prototype" model was tested in a sand box with load applied to the foundation through a compression jack and measured by means of load cell. The settlement was measured at the raft by means of dial gauges, three strain gauges were attached on piles to measure the strains and calculate the load carried by each pile in the group. Nine configurations of group ($1{\times}2$, $1{\times}3$, $1{\times}4$, $2{\times}2$, $2{\times}3$, $2{\times}4$, $3{\times}3$, $3{\times}4$ and $4{\times}4$) were tested in the laboratory as a free standing pile group (the raft not in contact with the soil) and as a piled raft (the raft in contact with the soil), in addition to tests for raft (unpiled) with different sizes. It is found that when the number of piles within the group is small (less than 4), there is no evident contribution of the raft to the load carrying capacity. The failure load for a piled raft consisting of 9 piles is approximately 100% greater than free standing pile group containing the same number of piles. This difference increases to about 4 times for 16 pile group. The piles work as settlement reducers effectively when the number of piles is greater than 6 than when the number of piles is less than 6. The settlement can be increased by about 8 times in ($1{\times}2$) free standing pile group compared to the piled raft of the same size. The effect of piled raft in reducing the settlement vanishes when the number of piles exceeds 6.

A Study on the Model Test for Estimating Dynamic Vertical Load Added to Shallow Foundation for Machine (진동기 얕은기초에 추가되는 동적 연직하중 산정을 위한 모형실험 방안 연구)

  • Ha, Ik-Soo;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.157-165
    • /
    • 2020
  • At present, there are no clearly stated criteria or theories in calculating additional vertical dynamic loads that occur at the machine foundation due to vibration and reflecting them in the design at home and abroad. According to the domestic standard, although it is not a serious vibration condition, the additional dynamic load due to vibration is considered up to 100% of the static load. This is an extremely conservative design. The purpose of this study is to propose a model test method for evaluating the quantitative magnitude of additional dynamic loads that are generated at certain static loads due to vertical mechanical vibrations. As preliminary basic tests for the model tests, the test for evaluating the effects of reflective wave that may occur within a limited size soil box and the test for estimating the natural frequency of the devised model soil-foundation system were carried out. From the analysis of results for basic tests, a method to minimize the influence of the reflected wave was prepared, and the effect of the resonance of the model system was minimized during the model tests. After the basic tests, the main model tests were conducted. Through the proposed main test, the quantitative magnitude of additional dynamic loads caused by machine vibration on a shallow foundation for machine on medium dense sand foundations were evaluated. From the results of the model test, the feasibility of design applied at home and abroad was reviewed.

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF

An Experimental Study on the Application of End-Expanded Soil Nailing Method (선단확장식 소일네일링 공법의 적용성에 관한 실험적 연구)

  • Lee, Sang-Eun;Jang, Yun-Ho;Moon, Chang-Yeul;Jeong, Gyo-Cheol;Park, Young-Sun
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 2007
  • The peculiarity of end-expanded soil nailing method(EESNM) is in fixing the wedge-type steel body spreaded by collars and grouting its surroundings by cement milk within soils, after extending hole bottom over drilling hole diameter with top drill bit. The present study was done to establish the effect of this method. Laboratory model test were carried out to investigate the behavior characteristics with the performance of the pull-out test and failure experiment, after preparing soil test box having 1,300mm length, width 1,000mm, and height 1,100mm, and the same experimental condition was set up to compare with the general soil nailing method(GSNM). The pull-out force of about 23 percentage was increased, and the horizontal displacements 1.2 from 9.1 percentage in soil-nailed wall decreased in EESNM compare with GSNM. The axial force acting on nail increased considerably at load level over 7 ton in EESNM and 5 ton in GSNM. The predicted failure line from the maxima analyzed by axial tensile strain located at long distance from soil-nailed wall in EESNM. The EESNM demonstrated the superiority of reinforcement effect in comparison with GSNM from the results above mentioned.

Correlations Between the Physical Properties and Compression Index of KwangYang Clay (광양점토의 물리적 특성과 압축지수의 상관성)

  • Bae, Wooseok;Kim, Jongwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.7-14
    • /
    • 2009
  • The correlation equation empirically proposed to obtain compression indexes has been proposed to conveniently obtain the value using the soil parameter that can be obtained through simple tests when the number of time of consolidation testing is low or the distribution is large but most of the analyzed regions are limited to certain regions abroad or in the country and multiple data were integrated for use in many cases, thus it is not very reasonable to apply it. Therefore, to establish a new design method considering the uncertainty of the ground, it was selected the Kwangyang port area of which the data have been collected recently thus are relatively more reliable as the subject region of the study in order to maximally reduce the uncertainty of test data. After performing the verification of the normality of the consolidation test data obtained from the selected region and the transformation of variables, a prediction formula was proposed through the regression model with the transformed variables and the proposed regression model with transformed variables was compared with existing empirical equations to verify the suitability of the proposed model formula. After analyzing, it was confirmed that the coefficient of determination was increased after the Box-Cox variable transformation, thus the explanatory power was being enhanced and through the root-mean-square-error method, it was confirmed that the proposed model formula showed the most closed value to the test value.

  • PDF

Seismic Fragility Evaluation of Cut-and-cover Tunnel (박스형 터널의 지진 취약도 평가)

  • Park, Duhee;Nguyen, Duy-Duan;Lee, Tae-Hyung;Nguyen, Van-Quang
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.71-80
    • /
    • 2018
  • In this study, the seismic response of cut-and-cover box tunnels is evaluated from pseudo-static analyses and the fragility curves are derived. A series of site profiles were used to evaluate the effect of soil conditions. A total of 20 ground motions were used. The fragility curves were developed as functions of peak ground acceleration for three damage states, which are minor, moderate, and extensive states. The damage indices, defined as the ratio of the elastic moment to the yield moment, correlated to three damage states, were used. The curves are shown to greatly depend on the site profile. The curves are further compared to those derived in previous studies. The widely used empirically derived curves are shown not to account for the site effects, and therefore underestimate the response for soft sites.

Behaviour of geogrid reinforced model retaining wall in active failure state by execution of parallel movement (병진이동으로 인한 주동파괴 시 지오그리드 보강토 모델벽체의 거동)

  • Lee, Kang-Man;Kong, Suk-Min;Lee, Dae-Young;Lee, Yong-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.117-127
    • /
    • 2015
  • Recently, there has been a string of negligent accidents for the retaining wall and slope. In order to measure the ground deformation for the MSE wall, the authors carried out the model test to assess behavioral characteristics of geogrid MSE walls in active failure state with different conditions of geogrid reinforcement. The models are built in the soil container box having dimension, 100 cm long, 90 cm height, and 10 cm wide. The reinforcement used in the model test is geogrid (polyvinyl chloride, PVC). Three geogrids are sized by $30cm{\times}60cm$, $30cm{\times}70cm$, $30cm{\times}80cm$ (width ${\times}$ length) respectively. In this study, the laboratory model tests represented for several conditions of the MSE wall, and then its results were compared to 2D FE analysis.