• Title/Summary/Keyword: Model scan method

Search Result 168, Processing Time 0.031 seconds

Assessment of the fit of zirconia-based prostheses fabricated with two different scan methods (서로 다른 두 가지 스캔법을 이용하여 제작된 지르코니아 보철물의 적합도에 대한 비교)

  • Choi, Hyun-Suk;Cho, Jin-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.2
    • /
    • pp.135-143
    • /
    • 2017
  • Purpose: This research was conducted to compare the marginal and internal fit of zirconia prostheses fabricated with the model scan method and the intraoral scan method. Materials and methods: In this study, 20 extracted human mandibular first molar was used in the preparation of abutment tooth for the fabrication of zirconia prostheses. In the first group, the model scan method was applied on 10 prepared teeth. In the other group, the intraoral scan method was used on other 10 prepared teeth. Datum of both groups were transmitted to the software system. Afterwards, 20 zirconia prostheses were fabricated using the Ceramill system. Weight technique was used to evaluate the internal gap of the zirconia prostheses. In the Replica technique, marginal gap of the zirconia prostheses were analyzed by optical microscopy. Statistical analysis was based on one-way ANOVA. Results: Model scan group showed lower average weight than intraoral scan group when weight technique was applied, which has significance (P < .05). Also, model scan group showed significantly lower figures in all 5 measurements of replica technique than intraoral scan group (P < .05). Conclusion: Zirconia prostheses of both groups demonstrated clinically acceptable margin and internal fit. However, model scanned zirconia prostheses showed higher marginal and internal fit than intraoral scanned crowns.

Parameter Calibration of Laser Scan Camera for Measuring the Impact Point of Arrow (화살 탄착점 측정을 위한 레이저 스캔 카메라 파라미터 보정)

  • Baek, Gyeong-Dong;Cheon, Seong-Pyo;Lee, In-Seong;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.76-84
    • /
    • 2012
  • This paper presents the measurement system of arrow's point of impact using laser scan camera and describes the image calibration method. The calibration process of distorted image is primarily divided into explicit and implicit method. Explicit method focuses on direct optical property using physical camera and its parameter adjustment functionality, while implicit method relies on a calibration plate which assumed relations between image pixels and target positions. To find the relations of image and target position in implicit method, we proposed the performance criteria based polynomial theorem model that overcome some limitations of conventional image calibration model such as over-fitting problem. The proposed method can be verified with 2D position of arrow that were taken by SICK Ranger-D50 laser scan camera.

Synthesis of Human Body Shape for Given Body Sizes using 3D Body Scan Data (3차원 스캔 데이터를 이용하여 임의의 신체 치수에 대응하는 인체 형상 모델 생성 방법)

  • Jang, Tae-Ho;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.364-373
    • /
    • 2009
  • In this paper, we suggest the method for constructing parameterized human body model which has any required body sizes from 3D scan data. Because of well developed 3D scan technology, we can get more detailed human body model data which allow to generate precise human model. In this field, there are a lot of research is performed with 3D scan data. But previous researches have some limitations to make human body model. They need too much time to perform hole-filling process or calculate parameterization of model. Even more they missed out verification process. To solve these problems, we used several methods. We first choose proper 125 3D scan data from 5th Korean body size survey of Size Korea according to age, height and weight. We also did post process, feature point setting, RBF interpolation and align, to parameterize human model. Then principal component analysis is adapted to the result of post processed data to obtain dominant shape parameters. These steps allow to reduce process time without loss of accuracy. Finally, we compare these results and statistical data of Size Korea to verify our parameterized human model.

STL mesh based laser scan planning system for complex freeform surfaces (STL 메쉬를 이용한 자유곡면의 레이저 측정경로 생성 연구)

  • 손석배;김승만;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.595-598
    • /
    • 2002
  • Laser scanners are getting used more and more in reverse engineering and inspection. For CNC-driven laser scanners, it is important to automate the scanning operations to improve the accuracy of capture point data and to reduce scanning time in industry. However, there are few research works on laser scan planning system. In addition, it is difficult to directly analyze multi-patched freeform models. In this paper, we propose an STL (Stereolithography) mesh based laser scan planning system for complex freeform surfaces. The scan planning system consists of three steps and it is assumed that the CAD model of the part exists. Firstly, the surface model is approximated into STL meshes. From the mesh model, normal vector of each node point is estimated. Second, scan directions and regions are determined through the region growing method. Also, scan paths are generated by calculating the minimum-bounding rectangle of points that can be scanned in each scan direction. Finally, the generated scan directions and paths are validated by checking optical constraints and the collision between the laser probe and the part to be scanned.

  • PDF

Generation of Laser Scan Path Considering Resin Solidification Phenomenon in Micro-stereolithography Technology (마이크로 광 조형기술에서 수지경화현상을 고려한 레이저 주사경로 생성)

  • 조윤형;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1037-1040
    • /
    • 2002
  • In micro-stereolithography technology, fabrication conditions that include laser power, laser scan speed, laser scan pitch, and material property of photopolymer such as penetration depth and critical exposure are considered as major process variables. But the existing scan path generation methods based only on CAD model have not taken them into account, which has resulted in cross-section dimension of low accuracy. Thus, to enhance cross-section dimensional accuracy, the physical resin solidification n phenomena should be reflected in laser scan path generation and stage operating code. In this paper, multi-line experiments based on single line solidification model are performed. And the method for improving cross-section dimensional accuracy is presented, which is to apply the database based on experimental results to laser scan path generation.

  • PDF

Modelling and LQG/LTR Compensator Design of the Seeker Scan-Loop (탐색기의 주사루프 모델링과 LQG/LTR보상기 설계)

  • 황홍연;이호평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2730-2741
    • /
    • 1993
  • A mathematical model of the seeker scan-loop which is composed of a spin-stabilized gyroscope and its driving signal processors is derived. The derived model has a transmission zero pair on the imaginary axis near to the required bandwidth. The LQG/LTR design methodology is evolved for the derived scan-loop model. To implement the designed LQG/LTR compensator to the actual plant, the compensator order is reduced using the internally balanced realization method. The performances of the LQG/LTR compensator are tested and compared with those of the P-control. Especially, stability-robustnessexperiments for model uncertainties represented in the form of time-delays are performed. It is demonstrated that the LQG/STR compensator is actually very robust to model uncertainties.

3D Reconstruction of 3D Printed Medical Metal Implants (3D 출력 의료용 금속 임플란트에 대한 3D 복원)

  • Byounghun Ye;Ku-Jin Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.229-236
    • /
    • 2023
  • Since 3D printed medical implant parts usually have surface defects, it is necessary to inspect the surface after manufacturing. In order to automate the surface inspection, it is effective to 3D scan the implant and reconstruct it as a scan model such as a point cloud. When constructing a scan model, the characteristics of the shape and material of the implant must be considered because it has characteristics different from those of general 3D printed parts. In this paper, we present a method to reconstruct the 3D scan model of a 3D printed metal bone-plate that is one kind of medical implant parts. Multiple partial scan data are produced by multi-view 3D scan, and then, we reconstruct a scan model by alignment and merging of partial data. We also present the process of the scan model reconstruction through experiments.

A recursive scheme for improvement of the lateral resolution in B-scan ultrasonography (회귀방법에 의한 초음파 진단기의 측면해상도 개선에 관한 연구)

  • 김선일;민병구;고명삼
    • 전기의세계
    • /
    • v.31 no.3
    • /
    • pp.204-208
    • /
    • 1982
  • The objective of this paper is to present a digital method for improving the lateral resolution of the B-scan images in the medical applications of ultrasound. The method is based upon a mathematical model of the lateral blurring caused by the finite beam width of the transducers. This model provides a simple method of applying a recursive scheme for image restoration with fast computation time. The point spread function (P.S.F.) can be measured by the reflective signals after scanning the small pins located along the depth of interest. From the measured P.S.F., one can compute the coefficient matrices of the inverse discrete-time dynamic state variable equation of the blurring process. Then, a recursive scheme for deblurring is applied to the recorded B-scan to improve the lateral resolution. One major advantage of the present recursive scheme over the transform method is in its applicability for the space-variant imaging, such as in the case of the rotational movement of transducer.

  • PDF

Two Degree of Freedom Robust Controller Design of a Seeker Scan-Loop (탐색기 주사루프의 2자유도 강인제어기 설계)

  • Lee, Ho-Pyeong;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.157-165
    • /
    • 1995
  • The new formulation of designing the two degree of freedom(TDF) robust controller is proposed using $H_{\infty}$optimization and model matching method. In this formulation the feedback controller and feedforward controller are designed in a single step using $H_{\infty}$optimization procedure. Roughly speaking, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while the feedforward controller is used to improve the robust model matching properties of the closed loop system. The proposed formulation will be illustrated and evaluated on a seeker scan-loop. And the performances of TDF robust controller are compared with those of the $H_{\infty}$ controller designed using Loop Shaping Design Procedure proposed by McFarlane and Glover.lover.

  • PDF

Wavelet Transform Based Deconvolution for Improvement of Time-Resolution of A-Scan Ultrasonic Signal (A-Scan 초음파 신호의 시간분해능 향상을 위한 웨이브렛 해석 기반 디컨벌루션 기법)

  • Ha, Job;Jhang, Kyung-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.84-89
    • /
    • 2001
  • Ultrasonic pulse echo method comes to be difficult to apply to the multi-layered structure with very thin layer, because the echoes from the top and the bottom of the layer are overlapped. Conventionally method, deconvolution technique has been used for the decomposition of overlapped UT signals, however it has disabilities when the waveform of the transmitted signal is distorted according to the propagation. In this paper, the wavelet transform based deconvolution (WTBD) technique is proposed as a new signal processing method that can decompose the overlapped echo signals in A-Scan signal with superior performances compared to the conventional deconvolution technique. Performances of the proposed method are shown by through computer simulations using model signal with noise and are demonstrated by through experiments for the fabricated acryl rod with a thin steel plate bonded to it.

  • PDF