• Title/Summary/Keyword: Model pile test

Search Result 390, Processing Time 0.029 seconds

A Study on Behavior Characteristics of Soft Ground by DCM Arrangement Type (DCM 배치 형상에 따른 연약지반 거동 특성에 관한 연구)

  • You, Seung-Kyong;Lee, Jong-Young;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.125-131
    • /
    • 2021
  • This study described the relationship of settlement-lateral displacement and settlement-heaving according to the DCM type using the model test results, in order to evaluate the behavioral characteristics of the soft ground improved with DCM. As a result, it was found that the total settlement of the model ground was relatively small in the soft ground, to which the DCM was applied, and the settlement was less in the order of the grid type, wall type, and pile type under the same load conditions. This trend was also the same for the lateral displacement and heaving. In addition, the relationship between settlement and lateral displacement of soft ground was analyzed to be similar to that of previous study (Leroueil et al., 1990). Therefore, the DCM of grid type was evaluated to be superior to other types for lateral flow and heaving in the improvement effect of soft ground.

Analysis of Nonlinear Destructive Interaction between Wind and Wave Loads Acting on the Offshore Wind Energy Converter based on the Hydraulic Model Test (해상 풍력발전체에 작용하는 풍하중과 파랑하중간의 비선형 상쇄간섭 해석 -수리모형실험을 중심으로)

  • Cho, Yong Jun;Yang, Kee Sok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.281-294
    • /
    • 2015
  • In order to quantitatively estimate the nonlinear destructive interaction of wave load with wind load, which is very vital for the optimal design of offshore wind energy converter, we carried out a hydraulic model test and wind tunnel test. As a substructure of offshore wind energy converter, we would deploy the monopile, which is popular due to its easiness in construction. Based on the simulation using Monte Carlo simulation using Kaimal spectrum and cross spectrum, the instantaneous maximum wind velocity is adjusted to 10 m/s. And, considering the wave conditions of the Western Sea where a pilot wind farm is planned to be constructed, $H_s=0.1m$, 0.15 m, 0.2 m is carefully chosen. It turns out that the nonlinear destructive interaction between the wind and wave loads acting on the offshore wind energy converter is more clearly visible at rough seas rather than at mild seas, which strongly support our deduction that a Large eddy, a swirling vortex developed near the bumpy water surface in the opposite direction of the wind, is the driving mechanism underlying nonlinear destructive interaction between the wind and wave loads.

An Experimental Study on the Estimation of Optimum Length of Soil Flow Protector with Wall Stiffness (벽체 강성에 따른 토사유입차단판의 최적 길이 산정에 관한 실험적 연구)

  • Yoo, Jae-Won;Seo, Min-Su;Son, Su-Won;Im, Jong-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.789-799
    • /
    • 2019
  • The settlement hardly occurs in structures supported by pile foundation such as abutment, culvert but a cavity is formed in the lower part of a structure. As a result, soil discharged from the lateral ground to the cavity accelerates the settlement of the lateral ground of the structure, resulting in a larger settlement. Therefore, in order to prevent problems caused by cavity under the structure supported by pile foundation, soil Flow Protector (briefly called 'FLP'), which can be easily installed on the side of structure, was developed. In this study, an laboratory model test was carried out to prove the reduction effect of settlement and to estimate the optimal installation length of the FLP. As a result, the installation of the FLP reduced the settlement of the lateral ground and prevented the leakage of lateral ground soil into the cavity. If the stiffness of the FLP is small, the state or active earth pressure is generated in the upper part, which is not favorable for stability. But if the stiffness of the FLP is high enough, the passive earth pressure area is generated in the upper part, which will be advantageous for the stability. Also, the increased installation length of FLP is effective to reduce the settlement. And the ratio of the optimal length of the FLP to the box structure height (H = 250 mm) are flexible FLP 1.38, stiff FLP 0.73.

A Study on the Behavior of Piled Raft Foundation Using Triaxial Compression Apparatus (삼축압축 시험기를 이용한 말뚝 지지 전면 기초 거동 연구)

  • 이영생;홍승현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.387-395
    • /
    • 2003
  • Model tests were conducted to study the behavior of the piled raft foundation system on sands. Especially in this study, the method using the triaxial compression apparatus was devised and used to apply the confining pressure which is considered difficult in the existing model test on the soil. Steel rods (6mm dia.) and aluminum plates (8mm thickness, 50mm dia.) were used to simulate piles and rafts respectively. Jumunjin standard sands were used to ensure the homogeneity of the sample. After the sample with the piled raft model was laid inside the triaxial cell, the confining pressure was applied and then the compressive force was applied. The increase and/or decrease ratio of the bearing capacity, the load distribution ratio between raft and piles and the effect of settlements decrease depending on the confining pressure, the number of piles and the length of piles were analyzed and the bearing capacity and skin friction of the pile was calculated. By the results of these experiments, the bearing capacity increased and the settlement decreased with this piled raft foundation system. Especially the effect was larger with the increase of the number of piles than with the increase of length of piles. Hereafter, the study of the load transfer mechanism of piles under confining pressure would be made possible using these small model tester like triaxial compression apparatus.

Installation of Suction Caisson Foundation for Offshore Wind Turbine : Model Test (해상풍력타워 석션기초의 설치시 거동에 대한 모형 시험 연구)

  • Kim, Dong-Joon;Kim, Su-Rin;Choo, Yun-Wook;Kim, Dong-Soo;Lee, Man-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.825-839
    • /
    • 2010
  • The global and domestic market for offshore wind farm is expected to grow fast, and the design and installation of substructure and foundation is getting more important. As for the offshore wind farms located in the shallow(depth < 20m) water, the construction and installation of the substructure and foundation makes up about 1/4 ~1/3 of the offshore wind farm construction cost, and the portion is expected to increase because the turbine capacity is increasing from 2 ~ 3MW to 5MW or larger and the water depth of wind farms is also increasing over 30m. As a foundation for offshore wind turbine, the suction caisson foundation is being considered to be a highly competitive alternative to the conventional monopile or gravity based structure, because it has features suitable for the offshore construction such as quick installation, no heavy equipment for penetration and no hammering noise for driving. In order to study the installation behaviour of the suction caisson, laboratory tests were performed with sand. The pore water pressure and displacement were measured to analyze the suction pressure during penetration, the penetration speed and the amount of heaving.

  • PDF

Estimation Method of Earth Pressures Acting on a Row of Piles due to Lateral Soil Movements (측방변형지반속 줄말뚝에 작용하는 토압의 산정법)

  • 홍원표;송영석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.13-22
    • /
    • 2004
  • In case of the lateral movement accurring at soft ground where a row of piles are installed, the crown failure at external arch zone of soil arching is firstly developed, and the cap failure at wedge zone in front of piles is lastly developed. Therefore, the lateral earth pressure acting on a row of piles due to soil movement should be calculated in each condition of crown and cap failures around piles. A theoretical equation of crown failure can be proposed using a cylindrical cavity expansion theory. The theoretical equation of crown failure is mainly affected by two factors. One is related to soil properties such as internal friction angle, cohesion and horizontal pressure, and the other is related to pile factors such as diameter, installation interval. Meanwhile, the yield range of lateral earth pressure is established in the estimation of theoretical equation based on crown and cap failures around piles. The theoretical values based on crown and cap failures are compared with the experimental values. The experimental values are located in the range proposed by theoretical values. Thus, it is confirmed that the theoretical values proposed in the study are very reasonable.

The Optimum Installation Angle of Reticulated Root Piles under Lateral Loads (횡방.향하중을 받는 그물식 뿌리말뚝의 최적 타설경사각)

  • 이승현;김명모
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.55-66
    • /
    • 1997
  • In order to investigate the influence of installation angle of reticulated root piles(RRP) on their lateral load capacities, model tests of lateral loads on RRP with various installation angles $0^{\circ}\;, 5^{\circ}\;, 10^{\circ}\;, 15^{\circ}\;, 20^{\circ}\;,and 25^{\circ}$ are carried out. One set of RRP consists of 12 piles which are installed in circular patterns forming two concentric circles, each of which has 6 piles. Each pile made of a steel bar of 5mm in diameter and 350mm in length, is coated with sand until the bar has the diameter of 6.5mm. According to the test results, RRP's response is travily influenced by the displacement level. At low displacement level(1m), lateral load capacity increases as the installation angle is increased. However, the value of the optimum installation angle decreases as the displacement level is increased. In fact, it is found to be $17.5^{\circ}$ at 6mm lateral displacement. The ratios of the lateral resistances for the optimum installation angles to those for the vertical RRP decrease as the lateral displacements are increased. Thus the effect of slant ins angle of RRP is expected to be reduced at higher level of lateral displacement.

  • PDF

Failure Modes in Piled Embankments (말뚝으로 지지된 성토지반의 파괴형태)

  • 홍원표;윤중만;서문성
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.207-220
    • /
    • 1999
  • Model tests were performed to investigate the failure modes in embankments on soft ground supported by piles with cap beams. In the model tests, Jumunjin standard sand was placed on simulated cap beams and soft ground. The cap beams are placed perpendicular to the longitudinal axis of the embankment. The colored sand and the Jmniin standard sand were placed one after the other above cap beams and soft ground to make lateral stripes with 3mm thickness in the embarkment. The colored sand was prepared by coating the Jumunjin sand with black lead powder. The photographs illustrate the two characteristic modes of failure in embarkments. One is the soil arching failure and the other is the punching shear failure. The failure mode depends on the height of embankment and the space between cap beams. That is, if the embankment is high enough compared with the space between cap beams, it will fail in arching failure. On the other hand if the embarkment is relatively low or the space between piles is too wide, it will fail in punching shear failure. The soil arching develops in embarkment as a semicylindrical arch with a thickness equal to the width of the cap beam. And the soil wedge developed above the cap beams remains intact during both arching and punching failures. The boundary of punching shear failure of the displaced soil mass can be defined on the basis of observation of the photographs.

  • PDF

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Pullout Characteristics of Pressure Reinjection-Grouted Reinforcements in Decomposed Granite Soil (화강풍화토 지반에 설치된 압력재주입 그라우팅 보강재의 인발특성)

  • Shim, Yong-Jin;Lee, Jong-Kyu;Lee, Bong-Jik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.61-68
    • /
    • 2012
  • Most widely methods for reinforcement of soil utilized in Korea are anchor method, soil nail method and micro pile method. These methods are classified by the intended use of the structure to be constructed, but the reinforcement of the ground is accomplished contains in common the process of grouting work after inserting the reinforcements. Domestically, gravity grouting has been used mostly so far, but there has always been the risk of insufficient restoration of the loose ground area from the drill holes because the grouting is conducted only by gravity. On the other hand, pressure reinjection grouting may enhance the grouting quality by solving the problem of the existing grouting method considerably since it additionally reinjects grouting through pre-installed tube a certain time after the first grouting. Accordingly, this study evaluated the pullout characteristics by the grouting methods by performing model test on decomposed granite soil, and investigated the support increasing characteristics of reinforcements depending on the curing time, reinjection pressure, and uplift force variation of the pressure reinjection grouting. The result of this research shows that the pressure reinjection grouting demonstrated 1.1~1.3 times of performance of the gravity grouting, and suggests some analysis on optimal water content, reinjection pressure and curing time of the pressure reinjection grouting.