• Title/Summary/Keyword: Model key feature

Search Result 211, Processing Time 0.029 seconds

Certificate-Based Signcryption Scheme without Pairing: Directly Verifying Signcrypted Messages Using a Public Key

  • Le, Minh-Ha;Hwang, Seong Oun
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.724-734
    • /
    • 2016
  • To achieve confidentiality, integrity, authentication, and non-repudiation simultaneously, the concept of signcryption was introduced by combining encryption and a signature in a single scheme. Certificate-based encryption schemes are designed to resolve the key escrow problem of identity-based encryption, as well as to simplify the certificate management problem in traditional public key cryptosystems. In this paper, we propose a new certificate-based signcryption scheme that has been proved to be secure against adaptive chosen ciphertext attacks and existentially unforgeable against chosen-message attacks in the random oracle model. Our scheme is not based on pairing and thus is efficient and practical. Furthermore, it allows a signcrypted message to be immediately verified by the public key of the sender. This means that verification and decryption of the signcrypted message are decoupled. To the best of our knowledge, this is the first signcryption scheme without pairing to have this feature.

Mitigation of Phishing URL Attack in IoT using H-ANN with H-FFGWO Algorithm

  • Gopal S. B;Poongodi C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1916-1934
    • /
    • 2023
  • The phishing attack is a malicious emerging threat on the internet where the hackers try to access the user credentials such as login information or Internet banking details through pirated websites. Using that information, they get into the original website and try to modify or steal the information. The problem with traditional defense systems like firewalls is that they can only stop certain types of attacks because they rely on a fixed set of principles to do so. As a result, the model needs a client-side defense mechanism that can learn potential attack vectors to detect and prevent not only the known but also unknown types of assault. Feature selection plays a key role in machine learning by selecting only the required features by eliminating the irrelevant ones from the real-time dataset. The proposed model uses Hyperparameter Optimized Artificial Neural Networks (H-ANN) combined with a Hybrid Firefly and Grey Wolf Optimization algorithm (H-FFGWO) to detect and block phishing websites in Internet of Things(IoT) Applications. In this paper, the H-FFGWO is used for the feature selection from phishing datasets ISCX-URL, Open Phish, UCI machine-learning repository, Mendeley website dataset and Phish tank. The results showed that the proposed model had an accuracy of 98.07%, a recall of 98.04%, a precision of 98.43%, and an F1-Score of 98.24%.

Implementation and Analysis of Power Analysis Attack Using Multi-Layer Perceptron Method (Multi-Layer Perceptron 기법을 이용한 전력 분석 공격 구현 및 분석)

  • Kwon, Hongpil;Bae, DaeHyeon;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.997-1006
    • /
    • 2019
  • To overcome the difficulties and inefficiencies of the existing power analysis attack, we try to extract the secret key embedded in a cryptographic device using attack model based on MLP(Multi-Layer Perceptron) method. The target of our proposed power analysis attack is the AES-128 encryption module implemented on an 8-bit processor XMEGA128. We use the divide-and-conquer method in bytes to recover the whole 16 bytes secret key. As a result, the MLP-based power analysis attack can extract the secret key with the accuracy of 89.51%. Additionally, this MLP model has the 94.51% accuracy when the pre-processing method on power traces is applied. Compared to the machine leaning-based model SVM(Support Vector Machine), we show that the MLP can be a outstanding method in power analysis attacks due to excellent ability for feature extraction.

An Improvement Algorithm for the Image Compression Imaging

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.30-41
    • /
    • 2020
  • Lines and textures are natural properties of the surface of natural objects, and their images can be sparsely represented in suitable frames such as wavelets, curvelets and wave atoms. Based on characteristics that the curvelets framework is good at expressing the line feature and wavesat is good at representing texture features, we propose a model for the weighted sparsity constraints of the two frames. Furtherly, a multi-step iterative fast algorithm for solving the model is also proposed based on the split Bergman method. By introducing auxiliary variables and the Bergman distance, the original problem is transformed into an iterative solution of two simple sub-problems, which greatly reduces the computational complexity. Experiments using standard images show that the split-based Bergman iterative algorithm in hybrid domain defeats the traditional Wavelets framework or curvelets framework both in terms of timeliness and recovery accuracy, which demonstrates the validity of the model and algorithm in this paper.

A Novel Two-Stage Training Method for Unbiased Scene Graph Generation via Distribution Alignment

  • Dongdong Jia;Meili Zhou;Wei WEI;Dong Wang;Zongwen Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3383-3397
    • /
    • 2023
  • Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing visual comprehension and reasoning. However, the performance of Scene Graph Generation is often compromised when working with biased data in real-world situations. While many existing systems focus on a single stage of learning for both feature extraction and classification, some employ Class-Balancing strategies, such as Re-weighting, Data Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel approach that decouples the feature extraction and classification phases of the scene graph generation process. For feature extraction, we leverage a transformer-based architecture and design an adaptive calibration function specifically for predicate classification. This function enables us to dynamically adjust the classification scores for each predicate category. Additionally, we introduce a Distribution Alignment technique that effectively balances the class distribution after the feature extraction phase reaches a stable state, thereby facilitating the retraining of the classification head. Importantly, our Distribution Alignment strategy is model-independent and does not require additional supervision, making it applicable to a wide range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several popular models, we achieved significant improvements over the previous state-of-the-art methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks.

An approach of evaluation and mechanism study on the high and steep rock slope in water conservancy project

  • Yang, Meng;Su, Huaizhi;Wen, Zhiping
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.527-535
    • /
    • 2017
  • In this study, an aging deformation statistical model for a unique high and steep rock slope was proposed, and the aging characteristic of the slope deformation was better reflected. The slope displacement was affected by multiple-environmental factors in multiple scales and displayed the same tendency with a rising water level. The statistical model of the high and steep rock including non-aging factors was set up based on previous analyses and the study of the deformation and residual tendency. The rule and importance of the water level factor as a non-aging unit was analyzed. A partitioned statistical model and mutation model were established for the comprehensive cumulative displacement velocity with the monitoring study under multiple factors and multiple parameters. A spatial model was also developed to reflect and predict the whole and sectional deformation character by combining aging, deformation and space coordinates. A neural network model was built to fit and predict the deformation with a high degree of precision by mastering its feature of complexity and randomness. A three-dimensional finite element model of the slope was applied to approach the structure character using numerical simulations. Further, a three-dimensional finite element model of the slope and dam was developed, and the whole deformation state was analyzed. This study is expected to provide a powerful and systematic method to analyze very high, important and dangerous slopes.

Precise segmentation of fetal head in ultrasound images using improved U-Net model

  • Vimala Nagabotu;Anupama Namburu
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.526-537
    • /
    • 2024
  • Monitoring fetal growth in utero is crucial to anomaly diagnosis. However, current computer-vision models struggle to accurately assess the key metrics (i.e., head circumference and occipitofrontal and biparietal diameters) from ultrasound images, largely owing to a lack of training data. Mitigation usually entails image augmentation (e.g., flipping, rotating, scaling, and translating). Nevertheless, the accuracy of our task remains insufficient. Hence, we offer a U-Net fetal head measurement tool that leverages a hybrid Dice and binary cross-entropy loss to compute the similarity between actual and predicted segmented regions. Ellipse-fitted two-dimensional ultrasound images acquired from the HC18 dataset are input, and their lower feature layers are reused for efficiency. During regression, a novel region of interest pooling layer extracts elliptical feature maps, and during segmentation, feature pyramids fuse field-layer data with a new scale attention method to reduce noise. Performance is measured by Dice similarity, mean pixel accuracy, and mean intersection-over-union, giving 97.90%, 99.18%, and 97.81% scores, respectively, which match or outperform the best U-Net models.

Human Iris Recognition using Wavelet Transform and Neural Network

  • Cho, Seong-Won;Kim, Jae-Min;Won, Jung-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.178-186
    • /
    • 2003
  • Recently, many researchers have been interested in biometric systems such as fingerprint, handwriting, key-stroke patterns and human iris. From the viewpoint of reliability and robustness, iris recognition is the most attractive biometric system. Moreover, the iris recognition system is a comfortable biometric system, since the video image of an eye can be taken at a distance. In this paper, we discuss human iris recognition, which is based on accurate iris localization, robust feature extraction, and Neural Network classification. The iris region is accurately localized in the eye image using a multiresolution active snake model. For the feature representation, the localized iris image is decomposed using wavelet transform based on dyadic Haar wavelet. Experimental results show the usefulness of wavelet transform in comparison to conventional Gabor transform. In addition, we present a new method for setting initial weight vectors in competitive learning. The proposed initialization method yields better accuracy than the conventional method.

A Study on the Criteria to Decide the Number of Aircrafts Considering Operational Characteristics (항공기 운용 특성을 고려한 적정 운용 대수 산정 기준 연구)

  • Son, Young-Su;Kim, Seong-Woo;Yoon, Bong-Kyoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • In this paper, we consider a method to access the number of aircraft requirement which is a strategic variable in national security. This problem becomes more important considering the F-X and KF-X project in ROKAF. Traditionally, ATO(Air Tasking Order) and fighting power index have been used to evaluate the number of aircrafts required in ROKAF. However, those methods considers static aspect of aircraft requirement. This paper deals with a model to accommodate dynamic feature of aircraft requirement using absorbing Markov chain. In conclusion, we suggest a dynamic model to evaluate the number of aircrafts required with key decision variables such as destroying rate, failure rate and repair rate.

Vehicle Face Re-identification Based on Nonnegative Matrix Factorization with Time Difference Constraint

  • Ma, Na;Wen, Tingxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2098-2114
    • /
    • 2021
  • Light intensity variation is one of the key factors which affect the accuracy of vehicle face re-identification, so in order to improve the robustness of vehicle face features to light intensity variation, a Nonnegative Matrix Factorization model with the constraint of image acquisition time difference is proposed. First, the original features vectors of all pairs of positive samples which are used for training are placed in two original feature matrices respectively, where the same columns of the two matrices represent the same vehicle; Then, the new features obtained after decomposition are divided into stable and variable features proportionally, where the constraints of intra-class similarity and inter-class difference are imposed on the stable feature, and the constraint of image acquisition time difference is imposed on the variable feature; At last, vehicle face matching is achieved through calculating the cosine distance of stable features. Experimental results show that the average False Reject Rate and the average False Accept Rate of the proposed algorithm can be reduced to 0.14 and 0.11 respectively on five different datasets, and even sometimes under the large difference of light intensities, the vehicle face image can be still recognized accurately, which verifies that the extracted features have good robustness to light variation.