• Title/Summary/Keyword: Model footing adjacent to slope

Search Result 3, Processing Time 0.019 seconds

Bearing Capacity of Strip Footing Adjacent on Cohesionless Slopes (비점착성 사면에 인접한 대상기초의 지지력)

  • Yu, Nam-Jae;Kim, Yeong-Gil;Jeon, Yeon-Jong
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.37-54
    • /
    • 1997
  • This paper is to investigate the bearing capacity and the failure mechanism of slope subjected to strip surcharges adjassent to embankment slope of sandy soil. Parametric model tests under plain strain condition were performed by changing width of footing, relative density of slope materials, and position of footing from the crest of slopes. For model tests, Jumunjin standard sand was used as the slope material and its relative density was 45% and 70%, respectively. The angle of slope was formed with 1 : 1.5 and 1 2. Rigid model footings, made of aluminuu were used with their widths of 4, 7, 10 and 12cm. For the position of model footing, position ratios, distance of model footing from the crest of slope divided by footing width, were 0, 0.5, 1, 2, 3, 4, 5. Failure mechanism was observed by using ink colored sands and markers inserted in model slopes. Ultimate bearing capacity obtained from tests was analyzed and compared with limit equilibrium method, limit analysis method and empirical equation. Characteristics of load-settlement curves and failure mechanism were also analyzed and compared with the existing theories. Thus, their effects on ultimate bearing capacity of model footing adjacent to slope were assessed.

  • PDF

Centrifuge Modelling of Bridge Abutment Foundation on the Sloped Ground (경사지반에 위치한 교대기초의 원심모델링)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Hong, Young-Kil
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.209-214
    • /
    • 2007
  • This paper is the research result about centrifuge model experiments of investigating the behavior of bridge abutment on the sloped ground. Ground condition of the studied site was the bridge abutment with pile foundation adjacent to the slope. The pile foundations was supported on the soft rocks covered with the embankment. Evaluating the behavior of such a complicate ground and structure conditions was not easy so that the centrifuge modelling was performed to find the overall behavior of them. Layout of centrifuge model experiment was simplified to simulate easily the actual behavior of very complicate site condition. Construction process in field such as ground excavation for footing foundation, installation of piles, placement of footing and bridge abutment, backfilling and surcharge loading eas duplicated in the centrifuge model experiment. Consequently, the stability of the piled bridge abutment adjacent to the slope of embankment was evaluated throughout centrifuge modelling.

  • PDF

Behavior of Retaining wall near Rigid slopes (강성사면에 인접한 옹벽의 거동에 관한 연구)

  • Yoo, Nam-Jae;Lee, Myoung-Woog;Park, Byoung-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.405-415
    • /
    • 1998
  • This thesis is an experimental and numerical research on bearing capacity acting retaining walls close to rigid slopes with stiff angles. Experiments were performed with changing the roughness of adjacent slope to the wall, its inclination, distance between wall and slope. Vertical stress and applied surcharge loads were measured by miniature earth cells and a load cel respectively. Stress distribution Vertical Settlement of surcharge load of rigid model footing were measured by LVDTs. Bearing capacities of surcharge loads were compared with theoretical estimations by using several different methods of limit equilibrium and numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung sung gyo and Chung in gyo (1994) were used to analyze test results Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the stress distributions acting in the backfill and to compare with test results. From results of surcharge test with model wall being very close to the slope, analyzed results by the modified silo theory and to be in the better agreements than other methods.

  • PDF